999 resultados para Supersymmetric gauge theory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the effects of dissipation in the deconfinement transition for pure SU(2) and SU(3) gauge theories. Using an effective theory for the order parameter, we study its Langevin evolution numerically. Noise effects are included for the case of SU(2). We find that both dissipation and noise have dramatic effects on the spinodal decomposition of the order parameter and delay considerably its thermalization. For SU(3) the effects of dissipation are even larger than for SU(2).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Higher gauge theory arises naturally in superstring theory, but many of its features remain obscure. In this thesis, after an exposition of the bacis tools in local higher gauge theory, a higher gauge Chern-Simons model is defined. We discuss the classical equations of motion as well as the behaviour of the gauge anomaly. We perform canonical quantization and we introduce two possible quantization schemes for the model. We also expound higher parallel transport in higher gauge theory, and we speculate that it can provide Wilson surfaces as topological observables for the higher gauge Chern-Simons theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La simulazione di un sistema quantistico complesso rappresenta ancora oggi una sfida estremamente impegnativa a causa degli elevati costi computazionali. La dimensione dello spazio di Hilbert cresce solitamente in modo esponenziale all'aumentare della taglia, rendendo di fatto impossibile una implementazione esatta anche sui più potenti calcolatori. Nel tentativo di superare queste difficoltà, sono stati sviluppati metodi stocastici classici, i quali tuttavia non garantiscono precisione per sistemi fermionici fortemente interagenti o teorie di campo in regimi di densità finita. Di qui, la necessità di un nuovo metodo di simulazione, ovvero la simulazione quantistica. L'idea di base è molto semplice: utilizzare un sistema completamente controllabile, chiamato simulatore quantistico, per analizzarne un altro meno accessibile. Seguendo tale idea, in questo lavoro di tesi si è utilizzata una teoria di gauge discreta con simmetria Zn per una simulazione dell'elettrodinamica quantistica in (1+1)D, studiando alcuni fenomeni di attivo interesse di ricerca, come il diagramma di fase o la dinamica di string-breaking, che generalmente non sono accessibili mediante simulazioni classiche. Si propone un diagramma di fase del modello caratterizzato dalla presenza di una fase confinata, in cui emergono eccitazioni mesoniche ed antimesoniche, cioè stati legati particella-antiparticella, ed una fase deconfinata.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transverse broadening of an energetic jet passing through a non-Abelian plasma is believed to be described by the thermal expectation value of a light-cone Wilson loop. In this exploratory study, we measure the light-cone Wilson loop with classical lattice gauge theory simulations. We observe, as suggested by previous studies, that there are strong interactions already at short transverse distances, which may lead to more efficient jet quenching than in leading-order perturbation theory. We also verify that the asymptotics of the Wilson loop do not change qualitatively when crossing the light cone, which supports arguments in the literature that infrared contributions to jet quenching can be studied with dimensionally reduced simulations in the space-like domain. Finally we speculate on possibilities for full four-dimensional lattice studies of the same observable, perhaps by employing shifted boundary conditions in order to simulate ensembles boosted by an imaginary velocity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We regularize compact and non-compact Abelian Chern–Simons–Maxwell theories on a spatial lattice using the Hamiltonian formulation. We consider a doubled theory with gauge fields living on a lattice and its dual lattice. The Hilbert space of the theory is a product of local Hilbert spaces, each associated with a link and the corresponding dual link. The two electric field operators associated with the link-pair do not commute. In the non-compact case with gauge group R, each local Hilbert space is analogous to the one of a charged “particle” moving in the link-pair group space R2 in a constant “magnetic” background field. In the compact case, the link-pair group space is a torus U(1)2 threaded by k units of quantized “magnetic” flux, with k being the level of the Chern–Simons theory. The holonomies of the torus U(1)2 give rise to two self-adjoint extension parameters, which form two non-dynamical background lattice gauge fields that explicitly break the manifest gauge symmetry from U(1) to Z(k). The local Hilbert space of a link-pair then decomposes into representations of a magnetic translation group. In the pure Chern–Simons limit of a large “photon” mass, this results in a Z(k)-symmetric variant of Kitaev’s toric code, self-adjointly extended by the two non-dynamical background lattice gauge fields. Electric charges on the original lattice and on the dual lattice obey mutually anyonic statistics with the statistics angle . Non-Abelian U(k) Berry gauge fields that arise from the self-adjoint extension parameters may be interesting in the context of quantum information processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this dissertation we explore the features of a Gauge Field Theory formulation for continuous spin particles (CSP). To make our discussion as self-contained as possible, we begin by introducing all the basics of Group Theory - and representation theory - which are necessary to understand where the CSP come from. We then apply what we learn from Group Theory to the study of the Lorentz and Poincaré groups, to the point where we are able to construct the CSP representation. Finally, after a brief review of the Higher-Spin formalism, through the Schwinger-Fronsdal actions, we enter the realm of CSP Field Theory. We study and explore all the local symmetries of the CSP action, as well as all of the nuances associated with the introduction of an enlarged spacetime, which is used to formulate the CSP action. We end our discussion by showing that the physical contents of the CSP action are precisely what we expected them to be, in comparison to our Group Theoretical approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We derive a new non-singular tree-level KLT relation for the n = 5-point amplitudes, with manifest 2(n-2)! symmetry, using information from one-loop amplitudes and IR divergences, and speculate how one might extend it to higher n-point functions. We show that the subleading-color N = 4 SYM 5-point amplitude has leading IR divergence of 1/epsilon, which is essential for the applications of this paper. We also propose a relation between the subleading-color N = 4 SYM and N = 8 supergravity 1-loop 5-point amplitudes, valid for the IR divergences and possibly for the whole amplitudes, using techniques similar to those used in our derivation of the new KLT relation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The one-loop quadratically divergent mass corrections in globally supersymmetric gauge theories with spontaneously broken abelian and non-abelian gauge symmetry are studied. Quadratically divergent mass corrections are found to persist in an abelian model with an ABJ anomaly. However, additional supermultiplets necessary to cancel the ABJ anomaly, turn out to be sufficient to eliminate the quadratic divergences as well, rendering the theory natural. Quadratic divergences are shown to vanish also in the case of an anomaly free model with spontaneously broken non-abelian gauge symmetry.