992 resultados para Superior colliculus
Resumo:
Assembling a nervous system requires exquisite specificity in the construction of neuronal connectivity. One method by which such specificity is implemented is the presence of chemical cues within the tissues, differentiating one region from another, and the presence of receptors for those cues on the surface of neurons and their axons that are navigating within this cellular environment.
Connections from one part of the nervous system to another often take the form of a topographic mapping. One widely studied model system that involves such a mapping is the vertebrate retinotectal projection-the set of connections between the eye and the optic tectum of the midbrain, which is the primary visual center in non-mammals and is homologous to the superior colliculus in mammals. In this projection the two-dimensional surface of the retina is mapped smoothly onto the two-dimensional surface of the tectum, such that light from neighboring points in visual space excites neighboring cells in the brain. This mapping is implemented at least in part via differential chemical cues in different regions of the tectum.
The Eph family of receptor tyrosine kinases and their cell-surface ligands, the ephrins, have been implicated in a wide variety of processes, generally involving cellular movement in response to extracellular cues. In particular, they possess expression patterns-i.e., complementary gradients of receptor in retina and ligand in tectum- and in vitro and in vivo activities and phenotypes-i.e., repulsive guidance of axons and defective mapping in mutants, respectively-consistent with the long-sought retinotectal chemical mapping cues.
The tadpole of Xenopus laevis, the South African clawed frog, is advantageous for in vivo retinotectal studies because of its transparency and manipulability. However, neither the expression patterns nor the retinotectal roles of these proteins have been well characterized in this system. We report here comprehensive descriptions in swimming stage tadpoles of the messenger RNA expression patterns of eleven known Xenopus Eph and ephrin genes, including xephrin-A3, which is novel, and xEphB2, whose expression pattern has not previously been published in detail. We also report the results of in vivo protein injection perturbation studies on Xenopus retinotectal topography, which were negative, and of in vitro axonal guidance assays, which suggest a previously unrecognized attractive activity of ephrins at low concentrations on retinal ganglion cell axons. This raises the possibility that these axons find their correct targets in part by seeking out a preferred concentration of ligands appropriate to their individual receptor expression levels, rather than by being repelled to greater or lesser degrees by the ephrins but attracted by some as-yet-unknown cue(s).
Resumo:
How does the brain use eye movements to track objects that move in unpredictable directions and speeds? Saccadic eye movements rapidly foveate peripheral visual or auditory targets and smooth pursuit eye movements keep the fovea pointed toward an attended moving target. Analyses of tracking data in monkeys and humans reveal systematic deviations from predictions of the simplest model of saccade-pursuit interactions, which would use no interactions other than common target selection and recruitment of shared motoneurons. Instead, saccadic and smooth pursuit movements cooperate to cancel errors of gaze position and velocity, and thus to maximize target visibility through time. How are these two systems coordinated to promote visual localization and identification of moving targets? How are saccades calibrated to correctly foveate a target despite its continued motion during the saccade? A neural model proposes answers to such questions. The modeled interactions encompass motion processing areas MT, MST, FPA, DLPN and NRTP; saccade planning and execution areas FEF and SC; the saccadic generator in the brain stem; and the cerebellum. Simulations illustrate the model’s ability to functionally explain and quantitatively simulate anatomical, neurophysiological and behavioral data about SAC-SPEM tracking.
Resumo:
Our percept of visual stability across saccadic eye movements may be mediated by presaccadic remapping. Just before a saccade, neurons that remap become visually responsive at a future field (FF), which anticipates the saccade vector. Hence, the neurons use corollary discharge of saccades. Many of the neurons also decrease their response at the receptive field (RF). Presaccadic remapping occurs in several brain areas including the frontal eye field (FEF), which receives corollary discharge of saccades in its layer IV from a collicular-thalamic pathway. We studied, at two levels, the microcircuitry of remapping in the FEF. At the laminar level, we compared remapping between layers IV and V. At the cellular level, we compared remapping between different neuron types of layer IV. In the FEF in four monkeys (Macaca mulatta), we identified 27 layer IV neurons with orthodromic stimulation and 57 layer V neurons with antidromic stimulation from the superior colliculus. With the use of established criteria, we classified the layer IV neurons as putative excitatory (n = 11), putative inhibitory (n = 12), or ambiguous (n = 4). We found that just before a saccade, putative excitatory neurons increased their visual response at the RF, putative inhibitory neurons showed no change, and ambiguous neurons increased their visual response at the FF. None of the neurons showed presaccadic visual changes at both RF and FF. In contrast, neurons in layer V showed full remapping (at both the RF and FF). Our data suggest that elemental signals for remapping are distributed across neuron types in early cortical processing and combined in later stages of cortical microcircuitry.
Resumo:
Many neurons in the frontal eye field (FEF) exhibit visual responses and are thought to play important roles in visuosaccadic behavior. The FEF, however, is far removed from striate cortex. Where do the FEF's visual signals come from? Usually they are reasonably assumed to enter the FEF through afferents from extrastriate cortex. Here we show that, surprisingly, visual signals also enter the FEF through a subcortical route: a disynaptic, ascending pathway originating in the intermediate layers of the superior colliculus (SC). We recorded from identified neurons at all three stages of this pathway (n=30-40 in each sample): FEF recipient neurons, orthodromically activated from the SC; mediodorsal thalamus (MD) relay neurons, antidromically activated from FEF and orthodromically activated from SC; and SC source neurons, antidromically activated from MD. We studied the neurons while monkeys performed delayed saccade tasks designed to temporally resolve visual responses from presaccadic discharges. We found, first, that most neurons at every stage in the pathway had visual responses, presaccadic bursts, or both. Second, we found marked similarities between the SC source neurons and MD relay neurons: in both samples, about 15% of the neurons had only a visual response, 10% had only a presaccadic burst, and 75% had both. In contrast, FEF recipient neurons tended to be more visual in nature: 50% had only a visual response, none had only a presaccadic burst, and 50% had both a visual response and a presaccadic burst. This suggests that in addition to their subcortical inputs, these FEF neurons also receive other visual inputs, e.g. from extrastriate cortex. We conclude that visual activity in the FEF results not only from cortical afferents but also from subcortical inputs. Intriguingly, this implies that some of the visual signals in FEF are pre-processed by the SC.
Resumo:
Each of our movements activates our own sensory receptors, and therefore keeping track of self-movement is a necessary part of analysing sensory input. One way in which the brain keeps track of self-movement is by monitoring an internal copy, or corollary discharge, of motor commands. This concept could explain why we perceive a stable visual world despite our frequent quick, or saccadic, eye movements: corollary discharge about each saccade would permit the visual system to ignore saccade-induced visual changes. The critical missing link has been the connection between corollary discharge and visual processing. Here we show that such a link is formed by a corollary discharge from the thalamus that targets the frontal cortex. In the thalamus, neurons in the mediodorsal nucleus relay a corollary discharge of saccades from the midbrain superior colliculus to the cortical frontal eye field. In the frontal eye field, neurons use corollary discharge to shift their visual receptive fields spatially before saccades. We tested the hypothesis that these two components-a pathway for corollary discharge and neurons with shifting receptive fields-form a circuit in which the corollary discharge drives the shift. First we showed that the known spatial and temporal properties of the corollary discharge predict the dynamic changes in spatial visual processing of cortical neurons when saccades are made. Then we moved from this correlation to causation by isolating single cortical neurons and showing that their spatial visual processing is impaired when corollary discharge from the thalamus is interrupted. Thus the visual processing of frontal neurons is spatiotemporally matched with, and functionally dependent on, corollary discharge input from the thalamus. These experiments establish the first link between corollary discharge and visual processing, delineate a brain circuit that is well suited for mediating visual stability, and provide a framework for studying corollary discharge in other sensory systems.
Resumo:
One way we keep track of our movements is by monitoring corollary discharges or internal copies of movement commands. This study tested a hypothesis that the pathway from superior colliculus (SC) to mediodorsal thalamus (MD) to frontal eye field (FEF) carries a corollary discharge about saccades made into the contralateral visual field. We inactivated the MD relay node with muscimol in monkeys and measured corollary discharge deficits using a double-step task: two sequential saccades were made to the locations of briefly flashed targets. To make second saccades correctly, monkeys had to internally monitor their first saccades; therefore deficits in the corollary discharge representation of first saccades should disrupt second saccades. We found, first, that monkeys seemed to misjudge the amplitudes of their first saccades; this was revealed by systematic shifts in second saccade end points. Thus corollary discharge accuracy was impaired. Second, monkeys were less able to detect trial-by-trial variations in their first saccades; this was revealed by reduced compensatory changes in second saccade angles. Thus corollary discharge precision also was impaired. Both deficits occurred only when first saccades went into the contralateral visual field. Single-saccade generation was unaffected. Additional deficits occurred in reaction time and overall performance, but these were bilateral. We conclude that the SC-MD-FEF pathway conveys a corollary discharge used for coordinating sequential saccades and possibly for stabilizing vision across saccades. This pathway is the first elucidated in what may be a multilevel chain of corollary discharge circuits extending from the extraocular motoneurons up into cerebral cortex.
Resumo:
Rapid orientating movements of the eyes are believed to be controlled ballistically. The mechanism underlying this control is thought to involve a comparison between the desired displacement of the eye and an estimate of its actual position (obtained from the integration of the eye velocity signal). This study shows, however, that under certain circumstances fast gaze movements may be controlled quite differently and may involve mechanisms which use visual information to guide movements prospectively. Subjects were required to make large gaze shifts in yaw towards a target whose location and motion were unknown prior to movement onset. Six of those tested demonstrated remarkable accuracy when making gaze shifts towards a target that appeared during their ongoing movement. In fact their level of accuracy was not significantly different from that shown when they performed a 'remembered' gaze shift to a known stationary target (F-3,F-15 = 0.15, p > 0.05). The lack of a stereotypical relationship between the skew of the gaze velocity profile and movement duration indicates that on-line modifications were being made. It is suggested that a fast route from the retina to the superior colliculus could account for this behaviour and that models of oculomotor control need to be updated.
Resumo:
Au cours du développement, les axones des cellules ganglionnaires de la rétine (CGRs) voyagent sur de longues distances pour établir des connexions avec leurs cellules cibles. La navigation des cônes de croissance est guidée par différentes molécules chimiotropiques présentes dans leur environnement. Les endocannabinoïdes (eCB) sont d’importants neuromodulateurs qui régulent de manière rétrograde la fonction de nombreuses synapses du cerveau. Ils agissent principalement par le biais de leurs récepteurs liés à une protéine Gi/o CB1 (CB1R) et CB2 (CB2R). La présence des eCBs durant le stade fœtal et la période postnatale suggère leur implication dans des événements régulant le développement du système nerveux. Cette thèse confirme l’expression des récepteurs aux cannabinoïdes CB1 et CB2 ainsi que l’enzyme dégradant les eCBs lors du développement embryonnaire et perinatal des CGRs et de la voie rétinothalamique in vivo. La manipulation pharmacologique de l’activité de CB1R et CB2R réorganise la morphologie du cône de croissance des CGRs et des neurones corticaux in vitro. De plus, la stimulation locale avec un agoniste de CB1R ou de CB2R modifie le comportement du cône de croissance entraînant sa répulsion. CB1R et CB2R modulent par le biais de la voie de signalisation AMPc/PKA, la mobilisation de DCC à la membrane plasmique. Par ailleurs, les résultats de cette recherche démontrent également l’implication de CB1R et CB2R dans la ségrégation des projections ipsi- et controlatérales et le développement de la voie rétinothalamique.
Resumo:
Les neurones des couches superficielles du collicule supérieur et du cortex visuel primaire du rat adulte sont sensibles à de basses fréquences spatiales de haut contraste défilant à des vitesses élevées. Entre les jours post-nataux 27-30 et l’âge adulte, les fréquences temporelles optimales des neurones du cortex visuel primaire augmentent, tandis que leurs seuils de contraste diminuent. Cependant, les fréquences spatiales optimales, les valeurs de résolution spatiale et les bandes passantes spatiales de ces neurones sont, dès l’ouverture des paupières, similaires à celles observées chez le rat adulte. Ces profils de réponse neuronale suggèrent que les projections rétino-colliculaires et rétino-géniculo-corticales sont essentiellement issues de neurones ganglionnaires rétinofuges magnocellulaires et koniocellulaires. Les neurones du cortex visuel primaire du rat ayant subi des convulsions hyperthermiques présentent, dès l’ouverture des paupières, de basses fréquences spatiales optimales, de larges bandes passantes directionnelles et temporelles ainsi que des seuils de contraste élevés par rapport aux neurones du rat normal. À l’âge adulte, de basses fréquences temporelles optimales et de larges bandes passantes spatiales sont également observées chez le rat ayant subi des convulsions hyperthermiques. L’altération des profils de réponse des neurones du cortex visuel primaire du rat ayant subi de convulsions hyperthermiques suggère un déséquilibre entre les mécanismes neuronaux excitateurs et inhibiteurs de cette aire corticale. Ces résultats suggèrent également qu’un épisode unique de convulsions fébriles infantiles suffit à altérer le développement des propriétés spatio-temporelles des champs récepteurs des neurones du cortex visuel primaire.
Resumo:
Le glaucome est la deuxième cause de cécité irréversible dans le monde. La perte de vision qui se produit lors du glaucome s’explique par une dégénérescence du nerf optique et une mort progressive et sélective des cellules ganglionnaires de la rétine (CRG). L'hypertension oculaire est un facteur de risque majeur dans le glaucome, mais des défauts du champ visuel continuent à se développer chez un contingent de patients malgré l'administration de médicaments qui abaissent la pression intraoculaire (PIO). Par conséquent, bien que la PIO représente le seul facteur de risque modifiable dans le développement du glaucome, son contrôle ne suffit pas à protéger les CRGs et préserver la fonction visuelle chez de nombreux patients. Dans ce contexte, j'ai avancé l'hypothèse centrale voulant que les stratégies de traitement du glaucome visant à promouvoir la protection structurale et fonctionnelle des CRGs doivent agir sur les mécanismes moléculaires qui conduisent à la mort des ces neurones. Dans la première partie de ma thèse, j'ai caractérisé l'effet neuroprotecteur de la galantamine, un inhibiteur de l'acétylcholinestérase qui est utilisé cliniquement dans le traitement de la maladie d'Alzheimer. Cette étude s’est basée sur l'hypothèse que la galantamine, en modulant l'activité du récepteur de l'acétylcholine, puisse améliorer la survie des CRGs lors du glaucome. Nous avons utilisé un modèle expérimental bien caractérisé d'hypertension oculaire induite par l’administration d'une solution saline hypertonique dans une veine épisclérale de rats Brown Norway. Les résultats de cette étude (Almasieh et al. Cell Death and Disease, 2010) ont démontré que l'administration quotidienne de galantamine améliore de manière significative la survie des corps cellulaires et des axones CRGs. La protection structurelle des CRGs s’accompagne d’une préservation remarquable de la fonction visuelle, évaluée par l'enregistrement des potentiels évoqués visuels (PEV) dans le collicule supérieur, la cible principale des CRGs chez le rongeur. Une autre constatation intéressante de cette étude est la perte substantielle de capillaires rétiniens et la réduction du débit sanguin associé à la perte des CRGs dans le glaucome expérimental. Il est très intéressant que la galantamine ait également favorisé la protection de la microvascularisation et amélioré le débit sanguin rétinien des animaux glaucomateux (Almasieh et al. en préparation). J'ai notamment démontré que les neuro-et vasoprotections médiées par la galantamine se produisent par iv l'activation des récepteurs muscariniques de l'acétylcholine. Dans la deuxième partie de ma thèse, j'ai étudié le rôle du stress oxydatif ainsi que l'utilisation de composés réducteurs pour tester l'hypothèse que le blocage d'une augmentation de superoxyde puisse retarder la mort des CRG lors du glaucome expérimental. J'ai profité d'un composé novateur, un antioxydant à base de phosphineborane (PB1), pour tester sur son effet neuroprotecteur et examiner son mécanisme d'action dans le glaucome expérimental. Les données démontrent que l'administration intraoculaire de PB1 entraîne une protection significative des corps cellulaire et axones des CRGs. Les voies moléculaires conduisant à la survie neuronale médiée par PB1 ont été explorées en déterminant la cascade de signalisation apoptotique en cause. Les résultats démontrent que la survie des CRGs médiée par PB1 ne dépend pas d’une inhibition de signalisation de protéines kinases activées par le stress, y compris ASK1, JNK ou p38. Par contre, PB1 induit une augmentation marquée des niveaux rétiniens de BDNF et une activation en aval de la voie de survie des ERK1 / 2 (Almasieh et al. Journal of Neurochemistry, 2011). En conclusion, les résultats présentés dans cette thèse contribuent à une meilleure compréhension des mécanismes pathologiques qui conduisent à la perte de CRGs dans le glaucome et pourraient fournir des pistes pour la conception de nouvelles stratégies neuroprotectrices et vasoprotectrices pour le traitement et la gestion de cette maladie.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
L’intégration de stimulations provenant de modalités sensorielles différentes nous offre des avantages perceptifs tels qu’une meilleure discrimination et une accélération des temps de réponse (TR) face aux évènements environnementaux. Cette thèse a investigué les effets de la position spatiale de stimulations visuelles et tactiles sur le gain de redondance (GR), qui correspond à une réduction du temps de réaction lorsque deux stimulations sont présentées simultanément plutôt qu’isolément. La première étude a comparé le GR lorsque les mêmes stimulations visuotactiles sont présentées dans une tâche de détection et une tâche de discrimination spatiale. Les stimulations étaient présentées unilatéralement dans le même hémichamp ou bilatéralement dans les hémichamps opposés. Dans la tâche de détection, les participants devaient répondre à toutes les stimulations, peu importe leur localisation. Les résultats de cette tâche démontrent que les stimulations unilatérales et bilatérales produisent un GR et une violation du modèle de course indissociables. Dans la tâche de discrimination spatiale où les participants devaient répondre seulement aux stimulations présentées dans l’hémichamp droit, les TR aux stimulations bilatérales étaient moins rapides. Nous n’avons pas observé de différence entre le GR maximal obtenu dans l’une ou l’autre des tâches de cette étude. Nous concluons que lorsque l’information spatiale n’est pas pertinente pour accomplir la tâche, les stimulations unilatérales et bilatérales sont équivalentes. La manipulation de la pertinence de l’information spatiale permet donc d’induire une altération du GR en fonction de la localisation des stimulations. Lors d’une seconde étude, nous avons investigué si la différence entre les gains comportementaux résultants de l’intégration multimodale et intramodale dépend de la configuration spatiale des stimulations. Les résultats montrent que le GR obtenu pour les conditions multimodales surpasse celui obtenu pour les stimulations intramodales. De plus, le GR des conditions multimodales n’est pas influencé par la configuration spatiale des stimulations. À l’opposé, les stimulations intramodales produisent un GR plus important iii lorsque les stimulations sont présentées bilatéralement. Nos résultats suggèrent que l’intégration multimodale et intramodale se distinguent quant au GR qu’ils produisent et quant aux conditions nécessaires à cette amélioration. La troisième étude examine le rôle du corps calleux (CC) dans l’observation du GR obtenu pour les stimulations multimodales et intramodales lorsque celles-ci sont présentées unilatéralement et bilatéralement. Quatre patients ayant une agénésie congénitale du corps calleux (AgCC) et un patient callosotomisé ont été comparés à des individus normaux dans une tâche de détection. Dans l’ensemble, les résultats suggèrent que le CC n’est pas nécessaire pour l’intégration interhémisphérique de stimulations multimodales. Sur la base d’études précédentes démontrant le rôle des collicules supérieurs (CS) dans l’intégration multimodale, nous concluons qu’en l’absence du CC, les bénéfices comportementaux résultants d’un traitement sous-cortical par les CS ne reflètent pas les règles d’intégration observées dans les études neurophysiologiques chez l’animal.
Resumo:
Chez plusieurs espèces, les neurones auditifs sensibles à la durée de la stimulation sont présents au niveau des collicules inférieurs. Toutefois, le décours temporel de leur développement fonctionnel est inconnu. Étant donné que le collicule supérieur est l’un des principaux relais sous-cortical impliqué dans l’intégration des stimuli audio-visuels, nous voulons déterminer si le collicule supérieur du rat contient de tels neurones et s’ils sont sensibles et sélectifs à différentes durées de stimulation auditive. De plus, l'originalité de cette étude est de déterminer les étapes de leur maturation fonctionnelle. Des enregistrements neuronaux unitaires et extra-cellulaires sont effectués dans le collicule supérieur de rats juvéniles (P15-P18, P21-P24, P27-P30) et adultes anesthésiés. La sensibilité à la durée est déterminée lors de la présentation de bruits gaussiens (2-10 dB SPL au-dessus du seuil) de durées variables (3-100 ms). Seulement un faible pourcentage des neurones du collicule supérieur est de type passe-bande (3-9% des neurones parmi les ratons et 20% chez les rats adultes). Une différence significative de la distribution entre les différents types de neurones auditifs sensibles à la durée est présente au cours du développement: les neurones de type passe-haut (63-75%) sont présents en majorité chez les groupes juvéniles alors que 43% des neurones sont de type insensible à la durée de la stimulation auditive chez les rats adultes. Ces résultats montrent qu’une population importante de neurones auditifs du collicule supérieur du rat est sensible à la durée des signaux sonores et qu’un développement fonctionnel important survient au cours du premier mois postnatal.
Resumo:
But: La perte unilatérale du cortex visuel postérieur engendre une cécité corticale controlatérale à la lésion, qu’on appelle hémianopsie homonyme (HH). Celle-ci est notamment accompagnée de problèmes d’exploration visuelle dans l’hémichamp aveugle dus à des stratégies oculaires déficitaires, qui ont été la cible des thérapies de compensation. Or, cette perte de vision peut s’accompagner d’une perception visuelle inconsciente, appelée blindsight. Notre hypothèse propose que le blindsight soit médié par la voie rétino-colliculaire extrastriée, recrutant le colliculus supérieur (CS), une structure multisensorielle. Notre programme a pour objectif d’évaluer l’impact d’un entraînement multisensoriel (audiovisuel) sur la performance visuelle inconsciente des personnes hémianopsiques et les stratégies oculaires. Nous essayons, ainsi, de démontrer l’implication du CS dans le phénomène de blindsight et la pertinence de la technique de compensation multisensorielle comme thérapie de réadaptation. Méthode: Notre participante, ML, atteinte d’une HH droite a effectué un entraînement d’intégration audiovisuel pour une période de 10 jours. Nous avons évalué la performance visuelle en localisation et en détection ainsi que les stratégies oculaires selon trois comparaisons principales : (1) entre l’hémichamp normal et l’hémichamp aveugle; (2) entre la condition visuelle et les conditions audiovisuelles; (3) entre les sessions de pré-entraînement, post-entraînement et 3 mois post-entraînement. Résultats: Nous avons démontré que (1) les caractéristiques des saccades et des fixations sont déficitaires dans l’hémichamp aveugle; (2) les stratégies saccadiques diffèrent selon les excentricités et les conditions de stimulations; (3) une adaptation saccadique à long terme est possible dans l’hémichamp aveugle si l’on considère le bon cadre de référence; (4) l’amélioration des mouvements oculaires est liée au blindsight. Conclusion(s): L’entraînement multisensoriel conduit à une amélioration de la performance visuelle pour des cibles non perçues, tant en localisation qu’en détection, ce qui est possiblement induit par le développement de la performance oculomotrice.