Novel molecular mechanisms of neuronal and vascular protection in experimental glaucoma


Autoria(s): Almasieh, Mohammadali
Contribuinte(s)

Di Polo, Adriana

Casanova, Christian

Data(s)

07/09/2012

31/12/1969

07/09/2012

05/07/2012

01/04/2012

Resumo

Le glaucome est la deuxième cause de cécité irréversible dans le monde. La perte de vision qui se produit lors du glaucome s’explique par une dégénérescence du nerf optique et une mort progressive et sélective des cellules ganglionnaires de la rétine (CRG). L'hypertension oculaire est un facteur de risque majeur dans le glaucome, mais des défauts du champ visuel continuent à se développer chez un contingent de patients malgré l'administration de médicaments qui abaissent la pression intraoculaire (PIO). Par conséquent, bien que la PIO représente le seul facteur de risque modifiable dans le développement du glaucome, son contrôle ne suffit pas à protéger les CRGs et préserver la fonction visuelle chez de nombreux patients. Dans ce contexte, j'ai avancé l'hypothèse centrale voulant que les stratégies de traitement du glaucome visant à promouvoir la protection structurale et fonctionnelle des CRGs doivent agir sur les mécanismes moléculaires qui conduisent à la mort des ces neurones. Dans la première partie de ma thèse, j'ai caractérisé l'effet neuroprotecteur de la galantamine, un inhibiteur de l'acétylcholinestérase qui est utilisé cliniquement dans le traitement de la maladie d'Alzheimer. Cette étude s’est basée sur l'hypothèse que la galantamine, en modulant l'activité du récepteur de l'acétylcholine, puisse améliorer la survie des CRGs lors du glaucome. Nous avons utilisé un modèle expérimental bien caractérisé d'hypertension oculaire induite par l’administration d'une solution saline hypertonique dans une veine épisclérale de rats Brown Norway. Les résultats de cette étude (Almasieh et al. Cell Death and Disease, 2010) ont démontré que l'administration quotidienne de galantamine améliore de manière significative la survie des corps cellulaires et des axones CRGs. La protection structurelle des CRGs s’accompagne d’une préservation remarquable de la fonction visuelle, évaluée par l'enregistrement des potentiels évoqués visuels (PEV) dans le collicule supérieur, la cible principale des CRGs chez le rongeur. Une autre constatation intéressante de cette étude est la perte substantielle de capillaires rétiniens et la réduction du débit sanguin associé à la perte des CRGs dans le glaucome expérimental. Il est très intéressant que la galantamine ait également favorisé la protection de la microvascularisation et amélioré le débit sanguin rétinien des animaux glaucomateux (Almasieh et al. en préparation). J'ai notamment démontré que les neuro-et vasoprotections médiées par la galantamine se produisent par iv l'activation des récepteurs muscariniques de l'acétylcholine. Dans la deuxième partie de ma thèse, j'ai étudié le rôle du stress oxydatif ainsi que l'utilisation de composés réducteurs pour tester l'hypothèse que le blocage d'une augmentation de superoxyde puisse retarder la mort des CRG lors du glaucome expérimental. J'ai profité d'un composé novateur, un antioxydant à base de phosphineborane (PB1), pour tester sur son effet neuroprotecteur et examiner son mécanisme d'action dans le glaucome expérimental. Les données démontrent que l'administration intraoculaire de PB1 entraîne une protection significative des corps cellulaire et axones des CRGs. Les voies moléculaires conduisant à la survie neuronale médiée par PB1 ont été explorées en déterminant la cascade de signalisation apoptotique en cause. Les résultats démontrent que la survie des CRGs médiée par PB1 ne dépend pas d’une inhibition de signalisation de protéines kinases activées par le stress, y compris ASK1, JNK ou p38. Par contre, PB1 induit une augmentation marquée des niveaux rétiniens de BDNF et une activation en aval de la voie de survie des ERK1 / 2 (Almasieh et al. Journal of Neurochemistry, 2011). En conclusion, les résultats présentés dans cette thèse contribuent à une meilleure compréhension des mécanismes pathologiques qui conduisent à la perte de CRGs dans le glaucome et pourraient fournir des pistes pour la conception de nouvelles stratégies neuroprotectrices et vasoprotectrices pour le traitement et la gestion de cette maladie.

Glaucoma is the second cause of irreversible blindness worldwide. Loss of vision in glaucoma is accompanied by progressive optic nerve degeneration and selective loss of retinal ganglion cells (RGCs). Ocular hypertension is a major risk factor in glaucoma, but visual field defects continue to progress in a large group of patients despite the use of drugs that lower intraocular pressure (IOP). Therefore, although IOP is the sole modifiable risk factor in the development of glaucoma, its regulation is not sufficient to protect RGCs and preserve visual function in many affected patients. To address this issue, I put forward the central hypothesis that effective therapeutic strategies for glaucoma must interfere with molecular mechanisms that lead to RGC death to successfully promote structural and functional protection of these neurons. In the first part of my thesis, I characterized the neuroprotective effect of galantamine, an acetylcholinesterase inhibitor that is clinically used for the treatment of Alzheimer’s disease. The specific hypothesis of this study was that galantamine, by modulating acetylcholine receptor activity, can improve the survival of injured RGCs in glaucoma. A well characterized experimental model of ocular hypertension induced by administration of a hypertonic saline into an episcleral vein of Brown Norway rats was used. The results of this study (Almasieh et al. Cell Death and Disease, 2010) demonstrated that daily administration of galantamine significantly improved the survival of RGC soma and axons in this model. Structural protection of RGCs correlated with substantial preservation of visual function, assessed by recording visual evoked potentials (VEPs) from the superior colliculus, the primary target of RGCs in the rodent brain. An interesting finding during the course of my thesis was that there is a substantial loss of retinal capillaries and a reduction in retinal blood that correlates with RGC loss in experimental glaucoma. Interestingly, galantamine also promoted the protection of the microvasculature and improved retinal blood flow in ocular hypertensive animals (Almasieh et al. in preparation). Importantly, I demonstrated that galantamine-mediated neuro- and vasoprotection occur through activation of muscarinic acetylcholine receptors. In the second part of my thesis, I investigated the role of oxidative stress and the use of reducing compounds to test the hypothesis that blockade of a superoxide burst may delay RGC death in experimental glaucoma. I took advantage of a novel phosphinevi borane based antioxidant compound available to us (PB1) to investigate its neuroprotective effect and mechanism of action in experimental glaucoma. The data demonstrate that intraocular administration of PB1 resulted in significant protection of RGC soma and axons. I also explored the molecular pathways leading to PB1-mediated neuronal survival by analyzing the components of survival and apoptotic signaling pathways involved in this response. My results show that PB1-mediated RGC survival did not correlate with inhibition of stress-activated protein kinase signaling, including ASK1, JNK or p38. Instead, PB1 led to a striking increase in retinal BDNF levels and downstream activation of the pro-survival ERK1/2 pathway (Almasieh et al. Journal of Neurochemistry, 2011). In conclusion, the findings presented in this thesis contribute to a better understanding of the pathological mechanisms underlying RGC loss in glaucoma and might provide insights into the design of novel neuroprotective and vasoprotective strategies for the treatment and management of this disease.

Identificador

http://hdl.handle.net/1866/8456

Idioma(s)

en

Palavras-Chave #Glaucome #Cellule ganglionnaire de la rétine #Neuroprotection #Inhibiteur de l'acétylcholinestérase #muscarinique #superoxyde #facteur neurotrophique dérivé du cerveau #kinases 1 et 2 régulées par des signaux extracellulaires #microvascularisation rétinienne #débit sanguin rétinien #Glaucoma #Retinal ganglion cell #Neuroprotection #Acetylcholinesterase inhibitor #Muscarinic #Superoxide #Brain-derived neurotrophic factor #Extracellular signalregulated kinase 1/2 #Retinal microvasculature #Retinal blood flow #Health Sciences - Pathology / Sciences de la santé - Pathologie (UMI : 0571)
Tipo

Thèse ou Mémoire numérique / Electronic Thesis or Dissertation