362 resultados para Supercritical
Resumo:
The mycelium and young fruiting bodies of Agaricus blazei were submitted to supercritical CO2 extraction, in a modified commercial flow apparatus, at temperatures from 40 to 80 ºC, pressures up to 600 bar and CO2 flow-rates from 2.0 to 9.0 g.min-1. The best extraction conditions of secondary metabolites, whereby the degree of solubilization (g extract/100 g of fungi) is the highest, was obtained with pure CO2 at 400 bar, 70 ºC and a CO2 flow rate of 5.7g.min-1. The extract in that conditions were analysed by GC-Ms. In order to increase the extraction yield of secondary metabolites, which are mostly present in glycolipid fractions, a polar compound (ethanol) was used as co-solvent in the proportions of 5 and 10 % (mol/mol). The presence of ethanol increased the yield when compared with the extraction with pure CO2. Moreover, a simple model was applied to the supercritical CO2 extraction of secondary metabolites from Agaricus blazei.
Resumo:
The volatiles from Coriandrum sativum L., Satureja montana L., Santolina chamaecyparissus L., and Thymus vulgaris L. were isolated by hydrodistillation (essential oil) and supercritical fluid extraction (volatile oil). Their effect on seed germination and root and shoot growth of the surviving seedlings of four crops (Zea mays L., Triticum durum L., Pisum sativum L., and Lactuca sativa L.) and two weeds (Portulaca oleracea L. and Vicia sativa L.) was investigated and compared with those of two synthetic herbicides, Agrocide and Prowl. The volatile oils of thyme and cotton lavender seemed to be promising alternatives to the synthetic herbicides because they were the least injurious to the crop species. The essential oil of winter savory, on the other hand, affected both crop and weeds and can be appropriate for uncultivated fields.
Resumo:
Supercritical fluid extraction (SEE) of the volatile oil from Thymus vulgaris L. aerial flowering parts was performed under different conditions of pressure, temperature, mean particle size and CO2 flow rate and the correspondent yield and composition were compared with those of the essential oil isolated by hydrodistillation (HD). Both the oils were analyzed by GC and GC-MS and 52 components were identified. The main volatile components obtained were p-cymene (10.0-42.6% for SFE and 28.9-34.8% for HD), gamma-terpinene (0.8-6.9% for SFE and 5.1-7.0% for HD), linalool (2.3-5.3% for SFE and 2.8-3.1% for HD), thymol (19.5-40.8% for SFE and 35.4-41.6% for HD), and carvacrol (1.4-3.1% for SFE and 2.6-3.1% for HD). The main difference was found to be the relative percentage of thymoquinone (not found in the essential oil) and carvacryl methyl ether (1.0-1.2% for HD versus t-0.4 for SFE) which can explain the higher antioxidant activity, assessed by Rancimat test, of the SFE volatiles when compared with HD. Thymoquinone is considered a strong antioxidant compound.
Resumo:
The modelling of the experimental data of the extraction of the volatile oil from six aromatic plants (coriander, fennel, savoury, winter savoury, cotton lavender and thyme) was performed using five mathematical models, based on differential mass balances. In all cases the extraction was internal diffusion controlled and the internal mass transfer coefficienty (k(s)) have been found to change with pressure, temperature and particle size. For fennel, savoury and cotton lavender, the external mass transfer and the equilibrium phase also influenced the second extraction period, since k(s) changed with the tested flow rates. In general, the axial dispersion coefficient could be neglected for the conditions studied, since Peclet numbers were high. On the other hand, the solute-matrix interaction had to be considered in order to ensure a satisfactory description of the experimental data.
Resumo:
Solubility measurements of quinizarin. (1,4-dihydroxyanthraquinone), disperse red 9 (1-(methylamino) anthraquinone), and disperse blue 14 (1,4-bis(methylamino)anthraquinone) in supercritical carbon dioxide (SC CO2) were carried out in a flow type apparatus, at a temperature range from (333.2 to 393.2) K and at pressures from (12.0 to 40.0) MPa. Mole fraction solubility of the three dyes decreases in the order quinizarin (2.9 x 10(-6) to 2.9.10(-4)), red 9 (1.4 x 10(-6) to 3.2 x 10(-4)), and blue 14 (7.8 x 10(-8) to 2.2 x 10(-5)). Four semiempirical density based models were used to correlatethe solubility of the dyes in the SC CO2. From the correlation results, the total heat of reaction, heat of vaporization plus the heat of solvation of the solute, were calculated and compared with the results presented in the literature. The solubilities of the three dyes were correlated also applying the Soave-Redlich-Kwong cubic equation of state (SRK CEoS) with classical mixing rules, and the physical properties required for the modeling were estimated and reported.
Resumo:
Solubilities of red 153, (3-[[4-[[5,6(or 6,7)-dichloro-2-benzothiazolyl]azo]phenyl]ethylamino]propanenitrile), an azo compound, and disperse blue1 (1,4,5,8-tetraaminoantraquinone) in supercritical carbon dioxide (SC CO(2)) were measured at T = (333.2 to 393.2) K over the pressure range (12.0 to 40.0) MPa by a flow type apparatus. The solubility of red 153 (0.985. 10(-6) to 37.2. 10(-6)) in the overall region of measurements is found to be significantly higher than that of disperse blue 1 (1.12.10(-7) to 4.89.10(-7)). The solubility behavior of disperse red 153 follows the general solubility trend displayed by disperse dyes with a crossover pressure at about 20 MPa. On the other hand, blue 1, which is a disperse anthraquinone dye, exhibits unexpected behavior not recorded previously there is no crossover pressure at the temperature and pressure ranges studied, and the dye's solubility at T = 333.2 K practically does not increase with pressure. To the best of our knowledge, there are no previous measurements of blue 1 solubility in SC CO(2) reported in the literature. The experimental data were correlated by using the Soave Redlich Kwong equation of state (EoS) with the one-fluid van der Waals mixing rule, and an acceptable correlation of the solubility data for both dyes was obtained.
Resumo:
A discussion of the most interesting results obtained in our laboratories, during the supercritical CO(2) extraction of bioactive compounds from microalgae and volatile oils from aromatic plants, was carried out. Concerning the microalgae, the studies on Botryococcus braunii and Chlorella vulgaris were selected. Hydrocarbons from the first microalgae, which are mainly linear alkadienes (C(23)-C(31)) with an odd number of carbon atoms, were selectively extracted at 313 K increasing the pressure up to 30.0 MPa. These hydrocarbons are easily extracted at this pressure, since they are located outside the cellular walls. The extraction of carotenoids, mainly canthaxanthin and astaxanthin, from C. vulgaris is more difficult. The extraction yield of these components at 313 K and 35.0 MPa increased with the degree of crushing of the microalga, since they are not extracellular. On the other hand, for the extraction of volatile oils from aromatic plants, studies on Mentha pulegium and Satureja montana L were chosen. For the first aromatic plant, the composition of the volatile and essential oils was similar, the main components being the pulegone and menthone. However, this volatile oil contained small amounts of waxes, which content decreased with decreasing particle size of the plant matrix. For S. montana L it was also observed that both oils have a similar composition, the main components being carvacrol and thymol. The main difference is the relative amount of thymoquinone, which content can be 15 times higher in volatile oil. This oxygenated monoterpene has important biological activities. Moreover, experimental studies on anticholinesterase activity of supercritical extracts of S. montana were also carried out. The supercritical nonvolatile fraction, which presented the highest content of the protocatechuic, vanilic, chlorogenic and (+)-catechin acids, is the most promising inhibitor of the enzyme butyrylcholinesterase. In contrast, the Soxhlet acetone extract did not affect the activity of this enzyme at the concentrations tested. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Solubilities of three primary amides, namely, acetanilide, propanamide, and butanamide, in supercritical carbon dioxide were measured at T = (308.2, 313.2, and 323.2) K over the pressure range (9.0 to 40.0) MPa by a flow type apparatus. The solubility behavior of the three solids shows an analogous trend with a crossover region of the respective isotherms between (12 to 14) MPa. The solubility of each amide, at the same temperature and pressure, decreases from propanamide to acetanilide. Pure compound properties required for the modeling were estimated, and the solubilities of the amides were correlated by using the Soave-Redlich-Kwong cubic equation of state with an absolute average relative deviation (AARD) from (1.3 to 6.1) %.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Mestrado Integrado em Engenharia Química e Bioquímica
Resumo:
Dried flowers and leaves of Origanum glandulosum Desf. were submitted to hydrodistillation (HD) and supercritical fluid extraction with CO2 (SFE). The essential oils isolated by HD and volatile oils obtained by SFE were analysed by GC and GC/MS. Total phenolics content and antioxidant effectiveness were performed. The main components of the essential oils from Bargou and Nefza were: p-cymene (40.4% and 39%), thymol (38.7% and 34.4%) and γ- terpinene (12.3% and 19.2%), respectively. The major components obtain by SFE in the volatile oil, from Bargou and Nefza, were: p-cymene (32.3% and 36.2%), thymol (41% and 40%) and γ-terpinene (20.3% and 13.3%). Total phenolic content, expressed in gallic acid equivalent (GAE) g kg-1 dry weight, varied from 12 to 27 g kg-1 dw, and the ability to scavenge the DPPH radicals, expressed by IC50 ranged from 44 to143 mg L-1.
Resumo:
An overview of the studies carried out in our laboratories on supercritical fluid extraction (SFE) of volatile oils from seven aromatic plants: pennyroyal (Mentha pulegium L.), fennel seeds (Foeniculum vulgare Mill.), coriander (Coriandrum sativum L.), savory (Satureja fruticosa Beguinot), winter savory (Satureja montana L.), cotton lavender (Santolina chamaecyparisus) and thyme (Thymus vulgaris), is presented. A flow apparatus with a 1 L extractor and two 0.27 L separators was built to perform studies at temperatures ranging from 298 to 353 K and pressures up to 30.0 MPa. The best compromise between yield and composition compared with hydrodistillation (HD) was achieved selecting the optimum experimental conditions of extraction and fractionation. The major differences between HD and SFE oils is the presence of a small percentage of cuticular waxes and the relative amount of thymoquinone, an oxygenated monoterpene with important biological properties, which is present in the oils from thyme and winter savory. On the other hand, the modeling of our data on supercritical extraction of volatile oil from pennyroyal is discussed using Sovova's models. These models have been applied successfully to the other volatile oil extractions. Furthermore, other experimental studies involving supercritical CO2 carried out in our laboratories are also mentioned.
Resumo:
Dissertação para obtenção do Grau de Doutor em Química Sustentável
Resumo:
Dissertação para obtenção do Grau de Mestre em Biotecnologia
Resumo:
Dissertação para a obtenção do Grau de Mestre em Engenharia Química e Bioquímica
Valorization of olive pomace through combination of biocatalysis with supercritical fluid technology
Resumo:
A supercritical carbon dioxide (scCO2) based oil extraction method was implemented on olive pomace (alperujo), and an oil yield of 25,5 +/- 0,8% (goil/gdry residue) was obtained. By Soxhlet extraction with hexane, an oil extraction yield of 28,9 +/- 0,8 % was obtained, which corresponds to an efficiency of 88,4 +/- 4,8 % for the supercritical method. The scCO2 extraction process was optimized for operating conditions of 50 MPa and 348,15 K, for which an oil loading of 32,60 g oil/kg CO2 was calculated. As a proof of concept, olive pomace was used as feedstock for biodiesel production, in a process combining the use of lipase as a catalyst with the use of scCO2 as a solvent, and integrating the steps of oil extraction, oil to biodiesel transesterification and subsequent separation of the latter. In the conducted experiments, FAME (fatty acid methyl ester) purities of 90% were obtained, with the following operating parameters: an oil:methanol molar ratio of 1:24; a residence time of 7,33 and 11,6 mins; a pressure of 40 MPa; a temperature of 313,15 K; and Lipozyme (Mucor miehei; Sigma-Aldritch) as an enzyme. However, oscillations of FAME purity were registered throughout the experiments, which could possibly be due to methanol accumulation in the enzymatic reactor. Finally, the phenolic content of olive pomace, and the effect of the drying process – oven or freeze-drying – and the extraction methods – hydro-alcoholic method and supercritical method – on the phenolic content were analysed. It was verified that the oven-drying process on the olive pomace preserved 90,1 +/- 3,6 % of the total phenolic content. About 62,3 +/- 5,53% of the oven-dried pomace phenolic content was extracted using scCO2 at 60 MPa and 323,15 K. Seven individual phenols – hydroxytyrosol, tyrosol, oleuropein, quercetin, caffeic acid, ferulic acid and p-coumaric acid – were identified and quantified by HPLC.