971 resultados para Sun protection products
Resumo:
The incidence of skin cancer is increasing worldwide. Protecting the skin from the sun by wearing protective clothing, using a sunscreen with appropriate sun protection factor, wearing a hat, and avoiding the sun are recommended as primary preventive activities by cancer agencies. In this paper the recent data relating to skin cancer primary preventive behaviour in Australia and other countries is reviewed. Comparison of the studies in a table format summarizing the methods, objectives, participants, findings and implications may be obtained from the corresponding author. The sun protection knowledge, attitudes and behaviour patterns observed in Australia are similar in other countries, although Australian studies generally, report higher knowledge levels about skin cancer and higher levels of sun protection. The findings suggest that sunscreen is the most frequent method of sun protection used across all age groups, despite recommendations that it should be at? adjunct to other forms of protection. While young children's sun protective behaviour is largely influenced by their parents' behaviours, they are still tinder protected, and sun protective measures such as seeking shade, avoiding the sun and protective clothing need to be emphasized. Adolescents have the lowest skin protection rates of all age groups. Within the adult age range, women and people with sensitive skin were most likely to be using skin protection. However, women were also more likely than men to sunbath deliberately and to use sun-tanning booths. The relationship between skin protection knowledge and attitudes, attitudes towards tanning and skin protection behaviour needs further investigation. Further studies need to include detailed assessments of sunscreen use and application patterns, and future health promotion activities need to focus on sun protection by wearing clothing and seeking shade to avoid increases in the sunburn rates observed to date.
Resumo:
In this study, the portrayal of tanned skin and sun protection in magazines, television programs, and movies popular with Australian adolescents were analyzed. Images of models in magazines (n = 1,791), regular/supporting characters in television programs (it = 867), and regular/supporting characters in cinema movies (n = 2,836) for the 12-month period August 1999 to July 2000 were coded and analyzed. Alight tan was the most predominant tan level, and protective clothing was the most common sun protection measure displayed across all forms of media. There were significant associations between gender and tan levels in the television and movie samples. Although it is important to monitor the portrayal of tan levels and sun protection measures in media targeting adolescents, overall, the authors' findings revealed a media environment generally supportive of sun protection objectives.
Resumo:
The authors investigated sunbathing behavior and intention prospectively using the Theory of Planned Behavior (TPB). Before summer, 85 young adults who intended to sunbathe completed a TPB questionnaire. After summer, 46 of them completed a second questionnaire about their summertime sunbathing behavior The proposed model was successful in predicting both behavior and intention to use sun protection, with 45% of the variance of self-reported sunscreen use and 32% of the variance in intention explained by the TPB. Items designed to measure self-efficacy and perceived control loaded onto different factors and demonstrated discriminant validity. Self-efficacy predicted both intention and behavior (after controlling for all other TPB variables), but perceived behavioral control did not. The authors discuss the implications of the findings for potential interventions to improve sun protection behavior.
Resumo:
Ultraviolet (UV) radiation potentially damages the skin, the immune system, and structures of the eye. A useful UV sun protection for the skin has been established. Since a remarkable body of evidence shows an association between UV radiation and damage to structures of the eye, eye protection is important, but a reliable and practical tool to assess and compare the UV-protective properties of lenses has been lacking. Among the general lay public, misconceptions on eye-sun protection have been identified. For example, sun protection is mainly ascribed to sunglasses, but less so to clear lenses. Skin malignancies in the periorbital region are frequent, but usual topical skin protection does not include the lids. Recent research utilized exact dosimetry and demonstrated relevant differences in UV burden to the eye and skin at a given ambient irradiation. Chronic UV effects on the cornea and lens are cumulative, so effective UV protection of the eyes is important for all age groups and should be used systematically. Protection of children's eyes is especially important, because UV transmittance is higher at a very young age, allowing higher levels of UV radiation to reach the crystalline lens and even the retina. Sunglasses as well as clear lenses (plano and prescription) effectively reduce transmittance of UV radiation. However, an important share of the UV burden to the eye is explained by back reflection of radiation from lenses to the eye. UV radiation incident from an angle of 135°-150° behind a lens wearer is reflected from the back side of lenses. The usual antireflective coatings considerably increase reflection of UV radiation. To provide reliable labeling of the protective potential of lenses, an eye-sun protection factor (E-SPF®) has been developed. It integrates UV transmission as well as UV reflectance of lenses. The E-SPF® compares well with established skin-sun protection factors and provides clear messages to eye health care providers and to lay consumers. © 2014 Behar-Cohen et al, This work is published by Dove Medical Press Ltd.
Resumo:
Exposure to the sun by infants has been demonstrated to increase the risk of the development of melanoma and other skin cancers later in life. A cohort of 508 women who delivered healthy Caucasian babies were followed up at 1 year to determine their knowledge, attitudes and practices regarding sun protection towards themselves and their child. In addition, the 1-year-old infants were assessed by a trained nurse for the number of nevi they had on their skin. Results indicate caregivers reported a high level of sun-protection practices towards their child, with 93% of the caregivers reporting usually or always placing the child in the shade when going outside. Further, 81% of the caregivers reported usually or always placing a hat on the child, while 64% reported usually or always applying sunscreen to the child's exposed skin. Interestingly, only 61% of the caregivers reported that they stayed in the shade to reduce sun exposure and only 42% wore a hat when out in the sun. Mother's own personal sun-protection methods predicted the method of sun protection that she would most likely use for the child. While children appear to be reasonably protected from the sun, they are influenced by their mother's own behaviors.
Resumo:
While knowledge about standardization of skin protection against ultraviolet radiation (UVR) has progressed over the past few decades, there is no uniform and generally accepted standardized measurement for UV eye protection. The literature provides solid evidence that UV can induce considerable damage to structures of the eye. As well as damaging the eyelids and periorbital skin, chronic UV exposure may also affect the conjunctiva and lens. Clinically, this damage can manifest as skin cancer and premature skin ageing as well as the development of pterygia and premature cortical cataracts. Modern eye protection, used daily, offers the opportunity to prevent these adverse sequelae of lifelong UV exposure. A standardized, reliable and comprehensive label for consumers and professionals is currently lacking. In this review we (i) summarize the existing literature about UV radiation-induced damage to the eye and surrounding skin; (ii) review the recent technological advances in UV protection by means of lenses; (iii) review the definition of the Eye-Sun Protection Factor (E-SPF®), which describes the intrinsic UV protection properties of lenses and lens coating materials based on their capacity to absorb or reflect UV radiation; and (iv) propose a strategy for establishing the biological relevance of the E-SPF.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Textile Technology: The sun-blocking properties of a textile are enhanced when a dye, pigment, delustrant, or ultraviolet absorber finish is present that absorbs ultraviolet radiation and blocks its transmission through a fabric to the skin. For this reason, dyed fabrics provide better sun protection than bleached fabrics. Since naturally-colored cottons contain pigments that produce shades ranging from light green to tan and brown, it seemed reasonable to postulate that they would provide better sun protection than conventional bleached cotton, and that natural pigments might prove more durable to laundering and light exposure than dyes, but there is no published research on the ultraviolet transmission values for naturally-pigmented cottons. The purpose of this study was to determine the ultraviolet protection (UPF) values of naturally-pigmented cotton in three shades (green, tan, and brown), and the effect of light exposure and laundering on the sun-blocking properties of naturally-pigmented cotton. Naturally-pigmented cotton specimens were exposed to xenon light and accelerated laundering, ultraviolet transmission values measured, and UPF values calculated following light exposure and laundering. The naturally-pigmented cottons exhibited significantly higher UPF values than conventional cotton (bleached or unbleached). Although xenon light exposure and laundering caused some fading, the UPF values of naturally-pigmented cotton continue to be sufficiently high so that all three shades continue to provide good sun protection after the equivalent of 5 home launderings and 80 American Association of Textile Chemists and Colorists fading units (AFUs) of xenon light exposure.
Resumo:
Background: Due to the increase of solar ultraviolet radiation (UV) incidence over the last few decades, the use of sunscreen has been widely adopted for skin protection. However, considering the high efficiency of sunlight-induced DNA lesions, it is critical to improve upon the current approaches that are used to evaluate protection factors. An alternative approach to evaluate the photoprotection provided by sunscreens against daily UV radiation-induced DNA damage is provided by the systematic use of a DNA dosimeter. Methodology/Principal Findings: The Sun Protection Factor for DNA (DNA-SPF) is calculated by using specific DNA repair enzymes, and it is defined as the capacity for inhibiting the generation of cyclobutane pyrimidine dimers (CPD) and oxidised DNA bases compared with unprotected control samples. Five different commercial brands of sunscreen were initially evaluated, and further studies extended the analysis to include 17 other products representing various formulations and Sun Protection Factors (SPF). Overall, all of the commercial brands of SPF 30 sunscreens provided sufficient protection against simulated sunlight genotoxicity. In addition, this DNA biosensor was useful for rapidly screening the biological protection properties of the various sunscreen formulations. Conclusions/Significance: The application of the DNA dosimeter is demonstrated as an alternative, complementary, and reliable method for the quantification of sunscreen photoprotection at the level of DNA damage.
Resumo:
In this study the authors addressed whether or not community members use relevant risk factors to determine an appropriate level of skin protection behavior in the prevention of skin cancer. The authors conducted a postal survey with a community sample of 3,600 Queensland residents that they randomly selected from the Commonwealth electoral roll. The predictors of perceptions of doing enough skin protection included intrapersonal, social, and attitudinal influences. People protected themselves from the sun primarily out of a desire for future good health and on other occasions did not protect themselves from the sun because they were not out there long enough to get burnt. The predictors of perceptions of doing enough skin protection indicated that participants were aware of relevant risk factors. The main reasons that people protect themselves from the sun suggest that they are acting on many health promotion messages. However, skin cancer prevention programs need to move beyond increasing awareness and knowledge of the disease to providing a supportive environment and enhancing individual skills. Health promotion campaigns could reinforce appropriate risk assessment and shape an individual's decision about how much sun protection is needed.
Resumo:
While knowledge about standardization of skin protection against ultraviolet radiation (UVR) has progressed over the past few decades, there is no uniform and generally accepted standardized measurement for UV eye protection. The literature provides solid evidence that UV can induce considerable damage to structures of the eye. As well as damaging the eyelids and periorbital skin, chronic UV exposure may also affect the conjunctiva and lens. Clinically, this damage can manifest as skin cancer and premature skin ageing as well as the development of pterygia and premature cortical cataracts. Modern eye protection, used daily, offers the opportunity to prevent these adverse sequelae of lifelong UV exposure. A standardized, reliable and comprehensive label for consumers and professionals is currently lacking. In this review we (i) summarize the existing literature about UV radiation-induced damage to the eye and surrounding skin; (ii) review the recent technological advances in UV protection by means of lenses; (iii) review the definition of the Eye-Sun Protection Factor (E-SPF®), which describes the intrinsic UV protection properties of lenses and lens coating materials based on their capacity to absorb or reflect UV radiation; and (iv) propose a strategy for establishing the biological relevance of the E-SPF. © 2013 John Wiley & Sons A/S.
Resumo:
Sunscreen use is the most common photoprotection alternative used by the population, and so these products should offer improved protection with broad - spectrum, UVA and UVB protection . Vegetal substances have recently been considered as resources for sunscreen formulations due to their UV spectrum absorption and antioxidant properties. The Euterpe oleracea Mart., popularly known as açai, in its che mical composition contain polyphenols compounds, such as anthocyanins and flavonoids , to which antioxidant properties have been attributed . The aim of this work was to develop O/W sunscreens emulsions con taining açai glycolic extract ( AGE) and to evaluate both their physical stability , safety and photoprotective efficacy. The safety of the extract was evaluated by in vitro phototoxicity and cytotoxicity tests. Emulsions containing AGE and sunscreens were formulated using different types and concentrations o f polymeric surfactant (Acrylates/C 10 - 30 Alkyl Acrylate Crosspolymer and Sodium Polyacrylate). The influence of two rheology modifiers (Polyacrylamide (and) C13 - 14/Isoparaffin (and) Laureth - 7 and Carbomer) on the stability was also investigated. Physical stability was evaluated by preliminary and accelerated studies. The macroscopic analyses, pH value and electrical conductivity determinations and rheological behavior were evaluated at different time intervals . The in vivo Sun Protect Factor ( SPF ) was determined according to the International Sun Protection Factor Test Method – 2006 and UVA Protection Factor (FPUVA), wavelength critical and reason SPF/FPUVA were performed according to the method Colipa 2011. The extract did not present cytotoxic ity and phototoxic ity . The stable emulsion containing 5% glycolic extract of açai and 1.0% of sodium poliyacrylate showed pseudoplastic and thixotropic behavior . The sunscreen emulsion containing açai glycolic extract showed a SPF 25.3 and PF - UVA = 14.97. Whe n açai glycolic extract was added in the emulsion sunscreen, no significant increase in the in vivo SPF and FPUVA values were observed. This emulsion showed 1.69 of the SPF/PF - UVA ratio and a critical wavelength value of 378 nm, so may therefore be conside red a sunscreen with UVA and UVB protection.
Resumo:
Rutin, one of the major flavonoids found in an assortment of plants, was reported to act as a sun protection factor booster with high anti-UVA defense, antioxidant, antiaging, and anticellulite, by improvement of the cutaneous microcirculation. This research work aimed at evaluating the rutin in vitro release from semisolid systems, in vertical diffusion cells, containing urea, isopropanol and propylene glycol, associated or not, according to the factorial design with two levels with center point. Urea (alone and in association with isopropanol and propylene glycol) and isopropanol (alone and in association with propylene glycol) influenced significant and negatively rutin liberation in diverse parameters: flux (g/cm2.h); apparent permeability coefficient (cm/h); rutin amount released (g/cm2); and liberation enhancement factor. In accordance with the results, the presence of propylene glycol 5.0% (wt/wt) presented statistically favorable to promote rutin release from this semisolid system with flux = 105.12 8.59 g/cm2.h; apparent permeability coefficient = 7.01 0.572 cm/h; rutin amount released = 648.80 53.01 g/cm2; and liberation enhancement factor = 1.21 0.07.