863 resultados para Sulfonic Acids
Resumo:
This PhD work deals with problems of synthetic organic chemistry with particular attention to the development of environmentally friendly processes. In particular, new synthetic strategies have been studied based on the use of low cost heterogeneous catalysts, non-toxic reagents and mild operating conditions that do not involve, when possible, the use of solvents. The catalysts examined are both basic and acids, commercial or prepared by hetereogenization of homogeneous catalysts synthesized by tethering or impregnation. In particular it will be discussed the catalytic activity of oxides (Al2O3 and TiO2), supported sulphonic acids and hydrotalcites for the reactions of selective monoesterificazion of dicarboxylic acids, dehydrogenation of butane in gas phase, esterification of levulinic acid, Friedel-Craft acylations, C-C and C-P coupling. The use of these materials has allowed the development of simple processes with low environmental impact. The operating conditions are in fact mild and reaction times short. The selectivity for the desired products is in all reported cases very high and the catalysts can be recycled maintaining their optimum performances.
Resumo:
Oxidation and S-nitrosylation of cysteinyl thiols (Cys-SH) to sulfenic (Cys-SOH), sulfinic (Cys-SO2H), sulfonic acids (Cys-SO3H), disulphides and S-nitrosothiols are suggested as important post-translational modifications that can activate or deactivate the function of many proteins. Non-enzymatic post-translational modifications to cysteinyl thiols have been implicated in a wide variety of physiological and pathophysiological states but have been difficult to monitor in a physiological setting because of a lack of experimental tools. The purpose of this review is to bring together the approaches that have been developed for stably trapping cysteine either in its reduced or oxidised forms for enrichment and or subsequent mass spectrometric analysis. These tools are providing insight into potential targets for post-translational modifications to cysteine modification in vivo. This article is part of a Special Issue entitled: Special Issue: Posttranslational Protein modifications in biology and Medicine. © 2013.
Resumo:
Free phenolic acids were extracted from a laboratory-produced sample of green malt. Aliquots of the phenolic acid extract were heated from 25 to 110°C over 27 h, representative of a commercial kilning regime. Samples were taken at regular intervals throughout heating and were assessed for changes in antioxidant activity by both the 2,2(prime)-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical-cation scavenging (ABTS(^•+)) and the ferric-reducing antioxidant potential (FRAP) assays. Changes in the profile of the phenolic acids of the extracts were determined by HPLC. Overall, there was a decrease in both antioxidant activity level and the level of phenolic acids, but as the temperature increased from 80 to 100°C, there was an increase in both the antioxidant activity level and the level of detected phenolic acids.
Resumo:
Sulfonic acid functionalised periodic mesoporous organosilicas (PrSO3 H-PMOs) with tunable hydrophobicity were synthesised via a surfactant-templating route, and characterised by porosimetry, TEM, XRD, XPS, inverse gas chromatography (IGC) and ammonia pulse chemisorption. IGC reveals that incorporation of ethyl or benzyl moieties into a mesoporous SBA-15 silica framework significantly increases the non-specific dispersive surface energy of adsorption for alkane adsorption, while decreasing the free energy of adsorption of methanol, reflecting increased surface hydrophobicity. The non-specific dispersive surface energy of adsorption of PMO-SO3H materials is strongly correlated with their activity towards palmitic acid esterification with methanol, demonstrating the power of IGC as an analytical tool for identifying promising solid acid catalysts for the esterification of free fatty acids. A new parameter [-ΔGCNP-P], defined as the per carbon difference in Gibbs free energy of adsorption between alkane and polar probe molecules, provides a simple predictor of surface hydrophobicity and corresponding catalyst activity in fatty acid esterification. © 2014 Elsevier B.V.
Resumo:
We report the first catalytic application of pore-expanded KIT-6 propylsulfonic acid (PrSO H) silicas, in fatty acid esterification with methanol under mild conditions. As-synthesized PrSO H-KIT-6 exhibits a 40 and 70% enhancement in turnover frequency (TOF) toward propanoic and hexanoic acid esterification, respectively, over a PrSO H-SBA-15 analogue of similar 5 nm pore diameter, reflecting the improved mesopore interconnectivity of KIT-6 over SBA-15. However, pore accessibility becomes rate-limiting in the esterification of longer chain lauric and palmitic acids over both solid acid catalysts. This problem can be overcome via hydrothermal aging protocols which permit expansion of the KIT-6 mesopore to 7 nm, thereby doubling the TOF for lauric and palmitic acid esterification over that achievable with PrSO H-SBA-15. © 2012 American Chemical Society.
Resumo:
A simple grafting protocol is reported which affords a ten-fold enhancement in acid site density of mesoporous sulfonic acid silicas compared to conventional syntheses, offering improved process efficiency and new opportunities for tailored supported solid acids in sustainable chemistry. This journal is
Resumo:
Free fatty acids (palmitic, stearic and oleic acid) were converted into biodiesel with methanol over composites catalysts consisting in SBA-15 with sulfonic acid groups (SBA-15-SO3H) immobilized in Chitosan (CH), at 60ºC. It was observed that the catalytic activity increased with the amount of SBA-15-SO3H dispersed in CH. It was also observed that the catalytic activity decreased in the series: palmitic acid > stearic acid > oleic. The catalytic stability of [SBA-15-SO3H]3/CH composites was studied. A good stability was observed.
Resumo:
The structures of two 1:1 proton-transfer red-black dye compounds formed by reaction of aniline yellow [4-(phenyldiazenyl)aniline] with 5-sulfosalicylic acid and benzenesulfonic acid, and a 1:2 nontransfer adduct compound with 3,5-dinitrobenzoic acid have been determined at either 130 or 200 K. The compounds are 2-(4-aminophenyl)-1-phenylhydrazin-1-ium 3-carboxy-4-hydroxybenzenesulfonate methanol solvate, C12H12N3+.C7H5O6S-.CH3OH (I), 2-(4-aminophenyl)-1-hydrazin-1-ium 4-(phenydiazinyl)anilinium bis(benzenesulfonate), 2C12H12N3+.2C6H5O3S-, (II) and 4-(phenyldiazenyl)aniline-3,5-dinitrobenzoic acid (1/2) C12H11N3.2C~7~H~4~N~2~O~6~, (III). In compound (I) the diaxenyl rather than the aniline group of aniline yellow is protonated and this group subsequently akes part in a primary hydrogen-bonding interaction with a sulfonate O-atom acceptor, producing overall a three-dimensional framework structure. A feature of the hydrogen bonding in (I) is a peripheral edge-on cation-anion association involving aromatic C--H...O hydrogen bonds, giving a conjoint R1/2(6)R1/2(7)R2/1(4)motif. In the dichroic crystals of (II), one of the two aniline yellow species in the asymmetric unit is diazenyl-group protonated while in the other the aniline group is protonated. Both of these groups form hydrogen bonds with sulfonate O-atom acceptors and thee, together with other associations give a one-dimensional chain structure. In compound (III), rather than proton-transfer, there is a preferential formation of a classic R2/2(8) cyclic head-to-head hydrogen-bonded carboxylic acid homodimer between the two 3,5-dinitrobenzoic acid molecules, which in association with the aniline yellow molecule that is disordered across a crystallographic inversion centre, result in an overall two-dimensional ribbon structure. This work has shown the correlation between structure and observed colour in crystalline aniline yellow compounds, illustrated graphically in the dichroic benzenesulfonate compound.
Resumo:
The structures of bis(guanidinium)rac-trans-cyclohexane-1,2-dicarboxylate, 2(CH6N3+) C8H10O4- (I), guanidinium 3-carboxybenzoate monohydrate CH6N3+ C8H5O4- . H2O (II) and bis(guanidinium) benzene-1,4-dicarboxylate trihydrate, 2(CH6N3+) C8H4O4^2- . 3H2O (III) have been determined and the hydrogen bonding in each examined. All three compounds form three-dimensional hydrogen-bonded framework structures. In anhydrous (I), both guanidinium cations give classic cyclic R2/2(8) N--H...O,O'(carboxyl) and asymmetric cyclic R1/2(6) hydrogen-bonding interactions while one cation gives an unusual enlarged cyclic interaction with O acceptors of separate ortho-related carboxyl groups [graph set R2/2(11)]. Cations and anions also associate across inversion centres giving cyclic R2/4(8) motifs. In the 1:1 guanidinium salt (II), the cation gives two separate cyclic R1/2(6) interactions, one with a carboxyl O-acceptor, the other with the water molecule of solvation. The structure is unusual in that both carboxyl groups give short inter-anion O...H...O contacts, one across a crystallographic inversion centre [2.483(2)\%A], the other about a two-fold axis of rotation [2.462(2)\%A] with a half-occupancy hydrogen delocalized on the symmetry element in each. The water molecule links the cation--anion ribbon structures into a three-dimensional framework. In (III), the repeating molecular unit comprises a benzene-1,4-dicarboxylate dianion which lies across a crystallographic inversion centre, two guanidinium cations and two water molecules of solvation (each set related by two-fold rotational symmetry), and a single water molecule which lies on a two-fold axis. Each guanidinium cation gives three types of cyclic interactions with the dianions: one R^1^~2~(6), the others R2/3(8) and R3/3(10) (both of these involving the water molecules), giving a three-dimensional structure through bridges down the b cell direction. The water molecule at the general site also forms an unusual cyclic R2/2(4) homodimeric association across an inversion centre [O--H...O, 2.875(2)\%A]. The work described here provides further examples of the common cyclic guanidinium cation...carboxylate anion hydrogen-bonding associations as well as featuring other less common cyclic motifs.
Resumo:
The structures of the anhydrous 1:1 proton-transfer compounds of isonipecotamide (piperidine-4-carboxamide) with the three isomeric mononitro-substituted benzoic acids and 3,5-dinitrobenzoic acid, namely 4-carbamoylpiperidinium 2-nitrobenzoate (I), 4-carbamoylpiperidinium 3-nitrobenzoate (II), 4-carbamoylpiperidinium 4-nitrobenzoate (III), (C6H13N2O+ C7H4NO4-) and 4-carbamoylpiperidinium 3,5-dinitrobenzoate (IV) (C6H13N2O+ C7H5N2O6-)respectively, have been determined at 200 K. All salts form hydrogen-bonded structures: three-dimensional in (I), two-dimensional in (II) and (III) and one-dimensional in (IV). Featured in the hydrogen bonding of three of these [(I), (II) and (IV)] is the cyclic head-to-head amide--amide homodimer motif [graph set R2/2~(8)] through a duplex N---H...O association, the dimer then giving structure extension via either piperidinium or amide H-donors and carboxylate-O and in some examples [(II) and (IV)], nitro-O atom acceptors. In (I), the centrosymmetric amide-amide homodimers are expanded laterally through N-H...O hydrogen bonds via cyclic R2/4(8) interactions forming ribbons which extend along the c cell direction. These ribbons incorporate the 2-nitrobenzoate cations through centrosymmetric cyclic piperidine N-H...O(carboxyl) associations [graph set R4/4(12)], giving inter-connected sheets in the three-dimensional structure. In (II) in which no amide-amide homodimer is present, duplex piperidinium N-H...O(amide) hydrogen-bonding homomolecular associations [graph set R2/2(14)] give centrosymmetric head-to-tail dimers. Structure extension occurs through hydrogen-bonding associations between both the amide H-donors and carboxyl and nitro O-acceptors as well as a three-centre piperidinium N-H...O,O'(carboxyl) cyclic R2/1(4) association giving the two-dimensional network structure. In (III), the centrosymmetric amide-amide dimers are linked through the two carboxyl O-atom acceptors of the anions via bridging piperidinium and amide N-H...O,O'...H-N(amide) hydrogen bonds giving the two-dimensional sheet structure which features centrosymmetric cyclic R4/4(12) associations. In (IV), the amide-amide dimer is also centrosymmetric with the dimers linked to the anions through amide N-H...O(nitro) interactions. The piperidinium groups extend the structure into one-dimensional ribbons via N-H...O(carboxyl) hydrogen bonds. The structures reported here further demonstrate the utility of the isonipecotamide cation in molecular assembly and highlight the efficacy of the cyclic R2/2(8) amide-amide hydrogen-bonding homodimer motif in this process and provide an additional homodimer motif type in the head-to-tail R2/2(14) association.
Resumo:
Introduction. There are two binding sites on the β1-adrenoceptor (AR), β1H and β1L corresponding to high and low affinity binding sites respectively, which can be activated to cause cardiostimulation. Some β-blockers that block β1AR and β2ARs can activate β1LARs at higher concentrations than those required to cause blockade. The β2AR does not form a corresponding low affinity binding site and therefore we postulated that heterologous amino acids are responsible for the formation of β1LAR. Aim. To investigate whether heterologous amino acids of transmembrane domain V (TMDV) of β1AR and β2ARs contribute to β1LAR. Methods. β1ARs, β2ARs and mutant β1ARs containing all (β1(β2TMDV)AR) or single amino acids of TMDV of the β2AR were prepared and stably expressed in Chinese Hamster Ovary cells. Concentration-effect curves for cyclicAMP accumulation were carried out for (-)-CGP12177 in the absence or presence of (-)-bupranolol. Results. The potencies (pEC50) of (-)-CGP12177 were β2AR (9.24 ± 0.14, n = 5), β1(V230I)AR (9.07 ± 0.07, n = 10), β1(β2TMDV)AR (8.86 ± 0.10, n = 15), β1(R222Q)AR (8.09 ± 0.29, n = 6), β1AR (8.00 ± 0.11, n = 11). The affinities (pKB) of (-)-bupranolol were β2AR (9.82 ± 0.52, n = 5), β1(V230I)AR (7.64 ± 0.12, n = 8), β1(β2TMV)AR (8.06 ± 0.17, n = 8), β1(R222Q)AR (7.33 ± 0.23, n = 5), β1AR (7.23 ± 0.23, n = 5). Discussion. The potency of (-)-CGP12177 was higher at β2AR than at β1AR consistent with activation through a low affinity site at the β1AR (β1LAR). The presence of V230 in β1AR accounted for the lower potency of (-)-CGP 12177. The affinity of (-)-bupranolol was lower at β1AR compared to β2AR. The presence of V230 in β1AR accounted in part for the lower affinity. In conclusion TMDV of the β1AR contributes in part to the low affinity binding site of β1AR.
Resumo:
There are two binding sites on the β1-adrenoceptor (AR), β1H and β1L corresponding to high and low affinity binding sites respectively, which can be activated to cause cardiostimulation (reviewed Kaumann and Molenaar, 2008). Some β-blockers that block β1AR and β2ARs can activate β1LARs at higher concentrations than those required to cause blockade. The β2AR does not form a corresponding low affinity binding site (Baker et al 2002) and therefore we postulated that heterologous amino acids are responsible for the formation of β1LAR. Our aim was to investigate whether heterologous amino acids of transmembrane domain V (TMDV) of β1AR and β2ARs contribute to β1LAR. β1ARs, β2ARs and mutant β1ARs containing all (β1(β2TMDV)AR) or single amino acids of TMDV of the β2AR were prepared and stably expressed in Chinese Hamster Ovary cells. Concentration-effect curves for cyclicAMP accumulation were carried out for (-)-CGP12177 or (-)-isoprenaline in the absence or presence of (-)-bupranolol. _______________________________________________________________________ (-)-CGP 12177 (-)-Bupranolol affinity (pKB) pEC50 vs (-)-CGP 12177 vs (-)-isoprenaline _______________________________________________________________________ β1AR 8.00 ± 0.11 (11) 7.23 ± 0.23 (5) 9.52 ± 0.28 (5) β2AR (high density) 9.24 ± 0.14 (5) 9.82 ± 0.52 (8) xPaulxxxxxxx β2AR (low density) no effect β1(β2TMV)AR 8.86 ± 0.10 (15) 8.06 ± 0.17 (8) 9.08 ± 0.22 (6) β1(V230I)AR 9.07 ± 0.07 (10) 7.64 ± 0.12 (8) 9.36 ± 0.28 (9) β1(R222Q)AR 8.09 ± 0.29 (6) 7.33 ± 0.23 (5) 9.36 ± 0.08 (6) β1(V230A)AR 7.59 ± 0.09 (6) 7.32 ± 0.24 (4) 8.62 ± 0.18 (5) _______________________________________________________________________ The potency of (-)-CGP12177 was higher at β2AR than at β1AR consistent with activation through a low affinity site at the β1AR (β1LAR) but not β2AR. The presence of V230 in β1AR accounted for the lower potency of (-)-CGP 12177. The affinity of (-)-bupranolol at β1AR and mutants was higher when determined with (-)-isoprenaline than with (-)-CGP 12177. The affinity of (-)-bupranolol determined against (-)-CGP 12177 was lower at β1AR compared to β2AR. The presence of V230 in β1AR accounted in part for the lower affinity. In conclusion V230 of the β1AR contributes in part to the low affinity binding site of β1AR. Baker JG, Hall IP, Hill SJ (2002). Pharmacological characterization of CGP12177 at the human β2-adrenoceptor. Br J Pharmacol 137, 400−408 Kaumann AJ, Molenaar P (2008) The low-affinity site of the β1-adrenoceptor and its relevance to cardiovascular pharmacology. Pharmacol Ther 118, 303-336