981 resultados para Structure failure
Resumo:
Common mode voltage (CMV) variations in PWM inverter-fed drives generate unwanted shaft and bearing current resulting in early motor failure. Multilevel inverters reduce this problem to some extent, with higher number of levels. But the complexity of the power circuit increases with an increase in the number of inverter voltage levels. In this paper a five-level inverter structure is proposed for open-end winding induction motor (IM) drives, by cascading only two conventional two-level and three-level inverters, with the elimination of the common mode voltage over the entire modulation range. The DC link power supply requirement is also optimized by means of DC link capacitor voltage balancing, with PWM control, using only inverter switching state redundancies. The proposed power circuit gives a simple power bus structure.
Resumo:
We present the results of combined experimental and theoretical (molecular dynamics simulations and integral equation theory) studies of the structure and effective interactions of suspensions of polymer grafted nanoparticles (PGNPs) in the presence of linear polymers. Due to the absence of systematic experimental and theoretical studies of PGNPs, it is widely believed that the structure and effective interactions in such binary mixtures would be very similar to those of an analogous soft colloidal material-star polymers. In our study, polystyrene-grafted gold nanoparticles with functionality f = 70 were mixed with linear polystyrene (PS) of two different molecular weights for obtaining two PGNP: PS size ratios, xi = 0.14 and 2.76 (where, xi = M-g/M-m, M-g and M-m being the molecular weights of grafting and matrix polymers, respectively). The experimental structure factor of PGNPs could be modeled with an effective potential (Model-X), which has been found to be widely applicable for star polymers. Similarly, the structure factor of the blends with xi = 0.14 could be modeled reasonably well, while the structure of blends with xi = 2.76 could not be captured, especially for high density of added polymers. A model (Model-Y) for effective interactions between PGNPs in a melt of matrix polymers also failed to provide good agreement with the experimental data for samples with xi = 2.76 and high density of added polymers. We tentatively attribute this anomaly in modeling the structure factor of blends with xi = 2.76 to the questionable assumption of Model-X in describing the added polymers as star polymers with functionality 2, which gets manifested in both polymer-polymer and polymer-PGNP interactions especially at higher fractions of added polymers. The failure of Model-Y may be due to the neglect of possible many-body interactions among PGNPs mediated by matrix polymers when the fraction of added polymers is high. These observations point to the need for a new framework to understand not only the structural behavior of PGNPs but also possibly their dynamics and thermo-mechanical properties as well. (C) 2015 AIP Publishing LLC.
Resumo:
In this paper, a methodology to reduce composite structure maintenance operational cost using SHM systems is adressed. Based on SHM real-time data, in-service structure lifetime prognostic and remaining useful lifetime (RUL) can be performed. Maintenance timetable can be therefore predicted by optimizing inspection times. A probabilistic ap-proach is combined with phenomenological fatigue damage models for composite mate-rials to perform maintenance cost-effectiveness of composite structure. A Monte Carlo method is used to estimate the probability of failure of composite structures and com-pute the average number of composite structure components to be replaced over the component lifetime. The replacement frequency of a given structure component over the aircraft lifetime is assessed. A first application of aeronautical composite structure maintenance is considered. Two composite models to predict the fatigue life and several laminates have been used. Our study shows that maintenance cost-effectiveness depends on material and fatigue loading applied.
Resumo:
This paper studies the stability of jointed rock slopes by using our improved three-dimensional discrete element methods (DEM) and physical modeling. Results show that the DEM can simulate all failure modes of rock slopes with different joint configurations. The stress in each rock block is not homogeneous and blocks rotate in failure development. Failure modes depend on the configuration of joints. Toppling failure is observed for the slope with straight joints and sliding failure is observed for the slope with staged joints. The DEM results are also compared with those of limit equilibrium method (LEM). Without considering the joints in rock masses, the LEM predicts much higher factor of safety than physical modeling and DEM. The failure mode and factor of safety predicted by the DEM are in good agreement with laboratory tests for any jointed rock slope.
Resumo:
Slip-weakening is one of the characteristics of geological materials under certain loadings. Non-uniform rock structure may exist in the vicinity of the slip surface for a rock slope. Some portion of the slip surface may be penetrated but the other not. For the latter case, the crack or the fault surface will undergo shear deformation before it becomes a successive surface under a certain loading. As the slipped portion advances,slip-weakening occurs over a distance behind the crack tip. In the weakening zone, the shear strength will decrease from its peak value to residual friction level. The stress will redistribute along the surface of crack and in the weakening zone. Thus the changed local stress concentration leads the crack to extend and the ratio of penetration of the slip surface to increase. From the view of large-scale for the whole slip surface, the shear strength will decrease due to the damage of interior rock structure, and the faulted rock behaves as a softening material. Such a kind of mechanism performs in a large number of practical landslides in the zones experienced strong earthquakes. It should be noted that the mechanism mentioned above is different from that of the breakage of structural clay,in which the geological material is regarded as a medium containing structural lumps and structural bands. In this paper, the softening behavior of a faulted rock should be regarded as a comprehensive result of the whole complicated process including slip-weakening, redistribution of stress, extension of crack tip, and the penetration of the slip surface. This process is accompanied by progressive failure and abrupt structural damage. The size of slip-weakening zone is related to the undergoing strain. Once the relative slide is initiated (local or integrated), the effect of slip-weakening will behave in a certain length behind the crack tip until the formation of the whole slip surface.
Resumo:
A newly developed numerical code, MFPA(2D) (Material Failure Process Analysis), is applied to study the influence of stochastic mesoscopic structure on macroscopic mechanical behavior of rock-like materials. A set of uniaxial compression tests has been numerically studied with numerical specimens containing pre-existing crack-like flaw. The numerical results reveal the influence of random mesoscopic structure on failure process of brittle material, which indicates that the variation of failure mode is strongly sensitive to the local disorder feature of the specimen. And the patterns of the crack evolution in the specimens are very different from each other due to the random mesoscopic structure in material. The results give a good explanation for various kinds of fracture modes and peak strength variation observed in laboratory studies with specimens made from the same rock block being statistically homogenous in macro scale. In addition, the evolution of crack is more complicated in heterogeneous cases than in homogeneous cases.
Resumo:
A brief review is presented of statistical approaches on microdamage evolution. An experimental study of statistical microdamage evolution in two ductile materials under dynamic loading is carried out. The observation indicates that there are large differences in size and distribution of microvoids between these two materials. With this phenomenon in mind, kinetic equations governing the nucleation and growth of microvoids in nonlinear rate-dependent materials are combined with the balance law of void number to establish statistical differential equations that describe the evolution of microvoids' number density. The theoretical solution provides a reasonable explanation of the experimentally observed phenomenon. The effects of stochastic fluctuation which is influenced by the inhomogeneous microscopic structure of materials are subsequently examined (i.e. stochastic growth model). Based on the stochastic differential equation, a Fokker-Planck equation which governs the evolution of the transition probability is derived. The analytical solution for the transition probability is then obtained and the effects of stochastic fluctuation is discussed. The statistical and stochastic analyses may provide effective approaches to reveal the physics of damage evolution and dynamic failure process in ductile materials.
Degradation failure features of chromium-plated gun barrels with a laser-discrete-quenched substrate
Resumo:
The effect of substrate laser-discrete quenching on the degradation failure of chromium-plated gun barrels was metallurgically investigated. The results show that substrate laser-discrete quenching changes the failure patterns of chromium coatings during firing, and some periodic through-thickness cracks in the fired chromium coatings are justly located at original substrate zones between two adjacent laser-quenched tracks. Moreover, chromium coatings and the laser-quenched zones on the substrate are simultaneously degraded in microstructure and property during firing. Furthermore, the periodic structure of the laser-discrete-quenched steel (LDQS) substrate near the breech remains after firing, and the hardness of the fired laser-quenched zones is still higher than that of original substrates. The specific failure features were utilized to illustrate the mechanism of the extended service life of chromium-plated gun barrels with the LDQS substrate. (c) 2007 Elsevier B.V All rights reserved.
Resumo:
Most of the existing automated machine vision-based techniques for as-built documentation of civil infrastructure utilize only point features to recover the 3D structure of a scene. However it is often the case in man-made structures that not enough point features can be reliably detected (e.g. buildings and roofs); this can potentially lead to the failure of these techniques. To address the problem, this paper utilizes the prominence of straight lines in infrastructure scenes. It presents a hybrid approach that benefits from both point and line features. A calibrated stereo set of video cameras is used to collect data. Point and line features are then detected and matched across video frames. Finally, the 3D structure of the scene is recovered by finding 3D coordinates of the matched features. The proposed approach has been tested on realistic outdoor environments and preliminary results indicate its capability to deal with a variety of scenes.
Resumo:
A novel corrugated composite core, referred to as a hierarchical corrugation, has been developed and tested experimentally. Hierarchical corrugations exhibit a range of different failure modes depending on the geometrical properties and the material properties of the structures. In order to understand the different failure modes the analytical strength model, developed in part 1 of this paper, was used to make collapse mechanism maps for the different corrugation configurations. If designed correctly, the hierarchical structures can have more than 7 times higher weight specific strength compared to its monolithic counter part. The difference in strength arises mainly from the increase in buckling resistance of the sandwich core members compared to the monolithic version. The highest difference in strength is seen for core configurations with low overall density. As the density of the core increases, the monolithic core members get stockier and more resistant to buckling and thus the benefits of the hierarchical structure reduces. © 2008 Elsevier Ltd. All rights reserved.
Resumo:
Lanthanide hexaaluminates including LaMgAl11O19, NdMgAl11O19, SmMgAl11O19 and GdMgAl11O19 were synthesized via Sol-Gel method. Due to the anisotropic crystal growth, these oxides crystallize in the form of platelets and the platelet thickness increases with the decrease of rare-earth ionic radius. It was observed that the thermal-shock resistances of LaMgAl11O19, NdMgAl11O19 and SmMgAl11O19 oxides were superior to 8YSZ as proved by water quenching tests. In addition, the thinner the platelet. the more interstices are retained in the sintered specimen, and the better thermal-shock resistance the oxide has. Based on SEM images, it can be seen that the SmMgAl11O19 sample exhibits a mixture of the intergranular and transgranular fracture after thermal cycling failure.
Resumo:
Lee M.H., Qualitative Circuit Models in Failure Analysis Reasoning, AI Journal. vol 111, pp239-276.1999.
Resumo:
Musculoskeletal ageing is associated with profound morphological and functional changes that increase fall risk and disease incidence and is characterised by age-related reductions in motor unit number and atrophy of muscle fibres, particularly type II fibres. Decrements in functional strength and power are relatively modest until the 6th decade, after which the rate of loss exponentially accelerates, particularly beyond the 8th decade of life. Physical activity is a therapeutic modality that can significantly attenuate age-related decline. The underlying signature of ageing, as manifested by perturbed redox homeostasis, leads to a blunting of acute and chronic redox regulated exercise adaptations. Impaired redox regulated exercise adaptations are mechanistically related to altered exercise-induced reactive oxygen and nitrogen species generation and a resultant failure to properly activate redox regulated signaling cascades. Despite the aforementioned specific impairment in redox signaling, exercise induces a plethora of beneficial effects, irrespective of age. There is, therefore, strong evidence for promoting regular physical exercise, especially progressive resistance training as a lifelong habitual practice.
Resumo:
In this paper, a couple mechanical-acoustic system of equations is solved to determine the relationship between emitted sound and damage mechanisims in paper under controlled stress conditions. The simple classical expression describing the frequency of a plucked string to its material properties is used to generate a numberical representation of the microscopic structue of the paper, and the resulting numerical model is then used to simulate the vibration of a range of simple fibre structures when undergoing two distinct types of damange mechanisms: (a)fibre/fibre bond failure, (b) fibre failure. The numercial results are analysed to determine whether there is any detectable systematic difference between the resulting acoustic emissions of the two damage processes. Fourier techniques are then used to compare th computeed results against experimental measurements. Distinct frequency components identifying each type of damage are shown to exist, and in this respect theory and experiments show good correspondece. Hence, it is shown, that althrough the mathematical model represents a grossly-simplified view of the complex structure of the paper, it nevertheless provides a good understanding of the underlying micro-mechanisms characterising its proeperties as a stress-resisting structure. Use of the model and acoompanying software will enable operators to identify approaching failure conditions in the continuous production of paper from emitted sound signals and take preventative action.
Resumo:
This paper will analyse two of the likely damage mechanisms present in a paper fibre matrix when placed under controlled stress conditions: fibre/fibre bond failure and fibre failure. The failure process associated with each damage mechanism will be presented in detail focusing on the change in mechanical and acoustic properties of the surrounding fibre structure before and after failure. To present this complex process mathematically, geometrically simple fibre arrangements will be chosen based on certain assumptions regarding the structure and strength of paper, to model the damage mechanisms. The fibre structures are then formulated in terms of a hybrid vibro-acoustic model based on a coupled mass/spring system and the pressure wave equation. The model will be presented in detail in the paper. The simulation of the simple fibre structures serves two purposes; it highlights the physical and acoustic differences of each damage mechanism before and after failure, and also shows the differences in the two damage mechanisms when compared with one another. The results of the simulations are given in the form of pressure wave contours, time-frequency graphs and the Continuous Wavelet Transform (CWT) diagrams. The analysis of the results leads to criteria by which the two damage mechanisms can be identified. Using these criteria it was possible to verify the results of the simulations against experimental acoustic data. The models developed in this study are of specific practical interest in the paper-making industry, where acoustic sensors may be used to monitor continuous paper production. The same techniques may be adopted more generally to correlate acoustic signals to damage mechanisms in other fibre-based structures.