999 resultados para Structural silicone sealant
Resumo:
This study evaluated in vitro the shear bond strength of a resin-based pit-and-fissure sealant (Fluroshield - F) associated with either an ethanol-based (Adper Single Bond 2 - SB) or an acetone-based (Prime & Bond - PB) adhesive system under conditions of oil contamination. Mesial and distal enamel surfaces from 30 sound third molars were randomly assigned to 2 groups (n=30): I - no oil contamination; II - oil contamination. Contamination (0.25 mL during 10 s) was performed after 37% phosphoric acid etching with an air/oil spray. The specimens were randomly assigned to subgroups, according to the bonding protocol adopted: subgroup A - F was applied to enamel without an intermediate bonding agent layer; In subgroups B and C, SB and PB, respectively, were applied, light-cured, and then F was applied and light-cured. Shear bond strength was tested at a crosshead speed of 0.5 mm/min in a universal testing machine. Means (± SD) in MPa were: IA-11.28 (±1.84); IIA-12.02 (±1.15); IB-9.73 (±2.38); IIB-9.62 (±2.29); IC-28.30 (±1.63); and IIC-25.50 (±1.91). It may be concluded that the oil contamination affected negatively the sealant bonding to enamel and the acetone-based adhesive system (PB) layer applied underneath the sealant was able to prevent its deleterious effects to adhesion.
Resumo:
This study evaluated the effect of surface sealant on the translucency of composite resin immersed in different solutions. The study involved the following materials: Charisma, Fortify and coffee, Coca-Cola®, tea and artificial saliva as solutions. Sixty-four specimens (n = 8) were manufactured and immersed in artificial saliva at 37 ± 1 °C. Samples were immersed in the solutions for three times a day and re-immersed in artificial saliva until the translucency readings. The measurements were carried out at nine times: T1 - 24 hours after specimen preparation, T2 - 24 hours after immersion in the solutions, T3 - 48 hours and T4 to T9 - 7, 14, 21, 30, 60 and 90 days, respectively, after immersion. The translucency values were measured using a JOUAN device. The results were subjected to ANOVA and Tukey's test at 5%. The surface sealant was not able to protect the composite resin against staining, the coffee showed the strongest staining action, followed by tea and regarding immersion time, a significant alteration was noted in the translucency of composite resin after 21 days.
Resumo:
This study evaluated in vitro the shear bond strength (SBS) of a resin-based pit-and-fissure sealant [Fluroshield (F), Dentsply/Caulk] associated with either an etch-and-rinse [Adper Single Bond 2 (SB), 3M/ESPE] or a self-etching adhesive system [Clearfil S3 Bond (S3), Kuraray Co., Ltd.] to saliva-contaminated enamel, comparing two curing protocols: individual light curing of the adhesive system and the sealant or simultaneous curing of both materials. Mesial and distal enamel surfaces from 45 sound third molars were randomly assigned to 6 groups (n=15), according to the bonding technique: I - F was applied to 37% phosphoric acid etched enamel. The other groups were contaminated with fresh human saliva (0.01 mL; 10 s) after acid etching: II - SB and F were light cured separately; III - SB and F were light cured together; IV - S3 and F were light cured separately; V - S3 and F were light cured simultaneously; VI - F was applied to saliva-contaminated, acid-etched enamel without an intermediate bonding agent layer. SBS was tested to failure in a universal testing machine at 0.5 mm/min. Data were analyzed by one-way ANOVA and Fisher's test (α=0.05).The debonded specimens were examined with a stereomicroscope to assess the failure modes. Three representative specimens from each group were observed under scanning electron microscopy for a qualitative analysis. Mean SBS in MPa were: I-12.28 (±4.29); II-8.57 (±3.19); III-7.97 (±2.16); IV-12.56 (±3.11); V-11.45 (±3.77); and VI-7.47 (±1.99). In conclusion, individual or simultaneous curing of the intermediate bonding agent layer and the resin sealant did not seem to affect bond strength to saliva-contaminated enamel. S3/F presented significantly higher SBS than the that of the groups treated with SB etch-and-rinse adhesive system and similar SBS to that of the control group, in which the sealant was applied under ideal dry, noncontaminated conditions.
Resumo:
The enzyme purine nucleoside phosphorylase from Schistosoma mansoni (SmPNP) is an attractive molecular target for the development of novel drugs against schistosomiasis, a neglected tropical disease that affects about 200 million people worldwide. In the present work, enzyme kinetic studies were carried out in order to determine the potency and mechanism of inhibition of a series of SmPNP inhibitors. In addition to the biochemical investigations, crystallographic and molecular modeling studies revealed important molecular features for binding affinity towards the target enzyme, leading to the development of structure-activity relationships (SAR).
Resumo:
An important approach to cancer therapy is the design of small molecule modulators that interfere with microtubule dynamics through their specific binding to the ²-subunit of tubulin. In the present work, comparative molecular field analysis (CoMFA) studies were conducted on a series of discodermolide analogs with antimitotic properties. Significant correlation coefficients were obtained (CoMFA(i), q² =0.68, r²=0.94; CoMFA(ii), q² = 0.63, r²= 0.91), indicating the good internal and external consistency of the models generated using two independent structural alignment strategies. The models were externally validated employing a test set, and the predicted values were in good agreement with the experimental results. The final QSAR models and the 3D contour maps provided important insights into the chemical and structural basis involved in the molecular recognition process of this family of discodermolide analogs, and should be useful for the design of new specific ²-tubulin modulators with potent anticancer activity.
Resumo:
A practical method for the structural assignment of 3,4-O-benzylidene-D-ribono-1,5-lactones and analogues using conventional NMR techniques and NOESY measurements in solution is described. 2-O-Acyl-3,4-O-benzylidene-D-ribono-1,5-lactones were prepared in good yields by acylation of Zinner’s lactone with acyl chlorides under mildly basic conditions. Structural determination of 2-O-(4-nitrobenzoyl)-3,4-O-benzylidene-D-ribono-1,5-lactone was achieved by single crystal x-ray diffraction, which supports the results based on spectroscopic data.
Resumo:
Multiple cell membrane alterations have been reported to be the cause of various forms of hypertension. The present study focuses on the lipid portion of the membranes, characterizing the microviscosity of membranes reconstituted with lipids extracted from the aorta and mesenteric arteries of spontaneously hypertensive (SHR) and normotensive control rat strains (WKY and NWR). Membrane-incorporated phospholipid spin labels were used to monitor the bilayer structure at different depths. The packing of lipids extracted from both aorta and mesenteric arteries of normotensive and hypertensive rats was similar. Lipid extract analysis showed similar phospholipid composition for all membranes. However, cholesterol content was lower in SHR arteries than in normotensive animal arteries. These findings contrast with the fact that the SHR aorta is hyporeactive while the SHR mesenteric artery is hyperreactive to vasopressor agents when compared to the vessels of normotensive animal strains. Hence, factors other than microviscosity of bulk lipids contribute to the vascular smooth muscle reactivity and hypertension of SHR. The excess cholesterol in the arteries of normotensive animal strains apparently is not dissolved in bulk lipids and is not directly related to vascular reactivity since it is present in both the aorta and mesenteric arteries. The lower cholesterol concentrations in SHR arteries may in fact result from metabolic differences due to the hypertensive state or to genes that co-segregate with those that determine hypertension during the process of strain selection.
Resumo:
The possibility of using a graphite silicone-rubber composite electrode (GSR) in a differential pulse voltammetric(DPV) procedure for rutin (vitamin P) determination is described. Cyclic voltammograms of rutin presented a reversible pair of oxidation/reduction peaks respectively at 0.411 and 0.390 V (vs. SCE) at the GSR surface in Britton-Robinson(B-R) buffer solution pH 4.0. In DPV after optimization of conditions, an oxidation peak at 0.370 V (vs. SCE) was used to quantitative determination of rutin in B-R buffer solution pH 4.0. In this case a linear dynamic range of 5.0×10-8 to 50.0×10-8 mol L-1 was observed with a detection limit of 1.8×10-8 mol L-1 for the analyte. Recoveries from 94 to 113% were observed. The electrode surface was renewed by polishing after each determination, with a repeatability of 1.09 ± 0.06 µA (n = 10) peak current. Rutin was determined in a pharmaceutical formulation using the proposed electrode and the results agreed with those from an official method within 95% confidence level.
Resumo:
Isosorbide succinate moieties were incorporated into poly(L-lactide) (PLLA) backbone in order to obtain a new class of biodegradable polymer with enhanced properties. This paper describes the synthesis and characterization of four types of low molecular weight copolymers. Copolymer I was obtained from monomer mixtures of L-lactide, isosorbide, and succinic anhydride; II from oligo(L-lactide) (PLLA), isosorbide, and succinic anhydride; III from oligo(isosorbide succinate) (PIS) and L-lactide; and IV from transesterification reactions between PLLA and PIS. MALDI-TOFMS and 13C-NMR analyses gave evidence that co-oligomerization was successfully attained in all cases. The data suggested that the product I is a random co-oligomer and the products II-IV are block co-oligomers.
Resumo:
The objective of the present study was to evaluate herbage accumulation, morphological composition, growth rate and structural characteristics in Mombasa grass swards subject to different cutting intervals (3, 5 and 7 wk) during the rainy and dry seasons of the year. Treatments were assigned to experimental units (17.5 m(2)) according to a complete randomised block design, with four replicates. Herbage accumulation was greater in the rainy than in the dry season (83 and 17%, respectively). Herbage accumulation (24,300 kg DM ha(-1)), average growth rate (140 kg DM ha(-1) d(-1)) and sward height (111 cm) were highest in the 7 wk cutting interval, but leaf proportion (56%), leaf:stem (1.6) and leaf:non leaf (1.3) ratios decreased. Herbage accumulation, morphological composition and sward structure of Mombasa grass sward may be manipulated through defoliation frequency. The highest leaf proportion was recorded in the 3-wk cutting interval. Longer cutting intervals affected negatively sward structure, with potential negative effects on utilization efficiency, animal intake and performance.
Resumo:
Background: Thyroid receptors, TRa and TR beta, are involved in important physiological functions such as metabolism, cholesterol level and heart activities. Whereas metabolism increase and cholesterol level lowering could be achieved by TR beta isoform activation, TRa activation affects heart rates. Therefore, beta-selective thyromimetics have been developed as promising drug-candidates for treatment of obesity and elevated cholesterol level. GC-1 [ 3,5-dimethyl-4-(4'-hydroxy- 3'-isopropylbenzyl)-phenoxy acetic acid] has ability to lower LDL cholesterol with 600-to 1400-fold more potency and approximately two-to threefold more efficacy than atorvastatin (Lipitor(C)) in studies in rats, mice and monkeys. Results: To investigate GC-1 specificity, we solved crystal structures and performed molecular dynamics simulations of both isoforms complexed with GC-1. Crystal structures reveal that, in TRa Arg228 is observed in multiple conformations, an effect triggered by the differences in the interactions between GC-1 and Ser277 or the corresponding asparagine (Asn331) of TR beta. The corresponding Arg282 of TR beta is observed in only one single stable conformation, interacting effectively with the ligand. Molecular dynamics support this model: our simulations show that the multiple conformations can be observed for the Arg228 in TR alpha, in which the ligand interacts either strongly with the ligand or with the Ser277 residue. In contrast, a single stable Arg282 conformation is observed for TR beta, in which it strongly interacts with both GC-1 and the Asn331. Conclusion: Our analysis suggests that the key factors for GC-1 selectivity are the presence of an oxyacetic acid ester oxygen and the absence of the amino group relative to T(3). These results shed light into the beta-selectivity of GC-1 and may assist the development of new compounds with potential as drug candidates to the treatment of hypercholesterolemia and obesity.
Resumo:
With the increased incidence of cancer and a similarly increased number of surgeries for insertion of silicone breast implants, it is necessary to assess the effect of such material within the breast tissue, particularly in mammography, because of the reduction in the power of breast cancer diagnosis. In this work, we introduce a breast phantom with silicone implants in order to evaluate the influence of the implant on the visibility of the main mammographic findings: fibers, microcalcifications and tumor masses. In this proposed phantom, the breast tissue was simulated using gel paraffin. In the optical density of phantom mammograms with implants, a reduction in breast tissue visibility was seen corresponding to 23% when compared to a phantom without silicone implants. This poor visibility was due to the X-ray beam scattering on silicone material; this effect produced a loss of visibility in the areas adjacent to the implant. It is expected that the proposed phantom model may be used as a device for the establishment of a technical standard for these types of procedures.
Resumo:
AIM: To evaluate the epidemiological, clinical, laboratory and histological variables capable of predicting the progression of hepatic structural disturbances in chronic hepatitis C patients during the time interval between two liver biopsies. METHODS: Clinical charts of 112 chronic hepatitis C patients were retrospectively analyzed, whereas liver biopsies were revised. Immunohistochemical detection of interferon receptor was based on the Envision-Peroxidase System. RESULTS: In the multivariate analysis, the variables in the age at first biopsy, ALT levels, presence of lymphoid aggregates and siderosis were the determinants of the best model for predicting the severity of the disease. The direct progression rate of hepatic structural lesions was significantly higher in untreated patients, intermediate in treated non-responders and lower in treated responders to antiviral therapy (non-treated vs responders, 0.22 +/- 0.50 vs -0.15 +/- 0.46, P = 0.0053). Immuno-expression of interferon receptor is not a relevant factor. CONCLUSION: The best predictors of the progression of fibrosis are age at the first liver biopsy, extent of ALT elevation, inflammation at liver histology and hepatic siderosis. Antiviral treatment is effective in preventing the progression of liver structural lesions in chronic hepatitis C patients. (C) 2008 WJG. All rights reserved.
Resumo:
Objective: This study evaluated ultra-structural dentine changes at the apical stop after CO(2) laser irradiation used during biomechanical preparation. Background: Most studies evaluating the sealing efficiency of CO(2) lasers have been carried out after apical root canal resections and retro-filling procedures. Methods: Sixty human canines were prepared with #1 to #6 Largo burs. The apical stops were established at 1 mm (n = 30) and 2 mm (n = 30) from the apex. Final irrigation was performed with 1% NaOCl and 15% EDTA followed by 20 ml of distilled and deionized water. Specimens were subdivided into three subgroups (n = 10 for each stop distance): GI-no radiation (n = 20); GII-3W potency (n = 20), GIII-5W potency (n = 20). After preparation, specimens were evaluated by scanning electron microscopy, with ultra-structural changes classified according to a scoring system based on six qualitatively different outcomes. Results: Statistical analysis using the Mann-Whitney test confirmed more intense results for the specimens irradiated at 5 W potency than at 3 W (p<0.0001). The Kruskal-Wallis test indicated that when using the same potencies (3 or 5 W) at 1 and 2 mm from the apex, there were no statistically significant differences in ultra-structural changes. Conclusions: Our results showed that ultra-structural changes ranged from smear layer removal to dentine fusion. As laser potency was increased from 3 to 5 W, ultra-structural changes included extensive fused lava-like areas sealing the apical foramen.
Resumo:
X-ray multiple diffraction experiments with synchrotron radiation were carried out on pure and doped nonlinear optical crystals: NH(4)H(2)PO(4) and KH(2)PO(4) doped with Ni and Mn, respectively. Variations in the intensity profiles were observed from pure to doped samples, and these variations correlated with shifts in the structure factor phases, also known as triplet phases. This result demonstrates the potential of X-ray phase measurements to study doping in this type of single crystal. Different methodologies for probing structural changes were developed. Dynamical diffraction simulations and curve fitting procedures were also necessary for accurate phase determination. Structural changes causing the observed phase shifts are discussed.