814 resultados para Step-tracking Movements
Resumo:
A DC-DC step-up micro power converter for solar energy harvesting applications is presented. The circuit is based on a switched-capacitorvoltage tripler architecture with MOSFET capacitors, which results in an, area approximately eight times smaller than using MiM capacitors for the 0.131mu m CMOS technology. In order to compensate for the loss of efficiency, due to the larger parasitic capacitances, a charge reutilization scheme is employed. The circuit is self-clocked, using a phase controller designed specifically to work with an amorphous silicon solar cell, in order to obtain themaximum available power from the cell. This will be done by tracking its maximum power point (MPPT) using the fractional open circuit voltage method. Electrical simulations of the circuit, together with an equivalent electrical model of an amorphous silicon solar cell, show that the circuit can deliver apower of 1132 mu W to the load, corresponding to a maximum efficiency of 66.81%.
Resumo:
This paper presents a micro power light energy harvesting system for indoor environments. Light energy is collected by amorphous silicon photovoltaic (a-Si:H PV) cells, processed by a switched capacitor (SC) voltage doubler circuit with maximum power point tracking (MPPT), and finally stored in a large capacitor. The MPPT fractional open circuit voltage (V-OC) technique is implemented by an asynchronous state machine (ASM) that creates and dynamically adjusts the clock frequency of the step-up SC circuit, matching the input impedance of the SC circuit to the maximum power point condition of the PV cells. The ASM has a separate local power supply to make it robust against load variations. In order to reduce the area occupied by the SC circuit, while maintaining an acceptable efficiency value, the SC circuit uses MOSFET capacitors with a charge sharing scheme for the bottom plate parasitic capacitors. The circuit occupies an area of 0.31 mm(2) in a 130 nm CMOS technology. The system was designed in order to work under realistic indoor light intensities. Experimental results show that the proposed system, using PV cells with an area of 14 cm(2), is capable of starting-up from a 0 V condition, with an irradiance of only 0.32 W/m(2). After starting-up, the system requires an irradiance of only 0.18 W/m(2) (18 mu W/cm(2)) to remain operating. The ASM circuit can operate correctly using a local power supply voltage of 453 mV, dissipating only 0.085 mu W. These values are, to the best of the authors' knowledge, the lowest reported in the literature. The maximum efficiency of the SC converter is 70.3 % for an input power of 48 mu W, which is comparable with reported values from circuits operating at similar power levels.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
The purpose of this paper is to contribute to the discussion of the effects of published school rankings based on average scores obtained by students on national exams. We study the effectiveness of this (low-stakes) accountability mechanism; we analyze whether students react to these rankings, by moving in or out of high-schools according to their scores and examine the movements of closing of schools. Our results suggest that families react strongly to published rankings. We also look at the changes in the socio-economic background of students of poorly performing schools in order to evaluate whether the publication of rankings has increased inequality, as feared by many observers. According to our results, published rankings do in fact reinforce stratification by income.
Resumo:
Résumé Le transfert du phosphate des racines vers les feuilles s'effectue par la voie du xylème. Il a été précédemment démontré que la protéine AtPHO1 était indispensable au transfert du phosphate dans les vaisseaux du xylème des racines chez la plante modèle Arabidopsis thaliana. Le séquençage et l'annotation du génome d'Arabidopsis ont permis d'identifier dix séquences présentant un niveau de similarité significatif avec le gène AtPHO1 et constituant une nouvelle famille de gène appelé la famille de AtPHO1. Basée sur une étude moléculaire et génétique, cette thèse apporte des éléments de réponse pour déterminer le rôle des membres de ia famille de AtPHO1 chez Arabidopsis, inconnue à ce jour. Dans un premier temps, une analyse bioinformatique des séquences protéiques des membres de la famille de AtPHO1 a révélé la présence dans leur région N-terminale d'un domaine nommé SPX. Ce dernier est conservé parmi de nombreuses protéines impliquées dans l'homéostasie du phosphate chez la levure, renforçant ainsi l'hypothèse que les membres de la famille de AtPHO1 auraient comme AtPHO1 un rôle dans l'équilibre du phosphate dans la plante. En parallèle, la localisation tissulaire de l'expression des gènes AtPHO dans Arabidopsis a été identifiée par l'analyse de plantes transgéniques exprimant le gène rapporteur uidA sous le contrôle des promoteurs respectifs des gènes AtPHO. Un profil d'expression de chaque gène AtPHO au cours du développement de la plante a été obtenu. Une expression prédominante au niveau des tissus vasculaires des racines, des feuilles, des tiges et des fleurs a été observée, suggérant que les gènes AtPHO pourraient avoir des fonctions redondantes au niveau du transfert de phosphate dans le cylindre vasculaire de ces différents organes. Toutefois, plusieurs régions promotrices des gènes AtPHO contrôlent également un profil d'expression GUS non-vasculaire, indiquant un rôle putatif des gènes AtPHO dans l'acquisition ou le recyclage de phosphate dans la plante. Dans un deuxième temps, l'analyse de l'expression des gènes AtPHO durant une carence en phosphate a établi que seule l'expression des gènes AtPHO1, AtPHO1; H1 et AtPHO1; H10 est régulée par cette carence. Une étude approfondie de leur expression en réponse à des traitements affectant l'homéostasie du phosphate dans la plante a ensuite démontré leur régulation par différentes voies de signalisation. Ensuite, une analyse détaillée de la régulation de l'expression du gène AtPHO1; H1O dans des feuilles d'Arabidopsis blessées ou déshydratées a révélé que ce gène constitue le premìer gène marqueur d'une nouvelle voie de signalisation induite par l'OPDA, pas par le JA et dépendante de la protéine COI1. Ces résultats démontrent pour la première fois que l'OPDA et le JA peuvent activer différents gènes via des voies de signalisation dépendantes de COI1. Enfin, cette thèse révèle l'identification d'un nouveau rôle de la protéine AtPHO1 dans la régulation de l'action de l'ABA au cours des processus de fermeture stomatique et de germination des graines chez Arabidopsis. Bien que les fonctions exactes des protéines AtPHO restent à être déterminées, ce travail de thèse suggère leur implication dans la propagation de différents signaux dans la plante via la modulation du potentiel membranaire et/ou l'affectation de la composition en ions des cellules comme le font de nombreux transporteurs ou régulateur du transport d'ions. Summary Phosphate is transferred from the roots to the shoot via the xylem. The requirement for AtPHO1 protein to transfer phosphate to the xylem vessels of the root has been previously demonstrated in Arabidopsis thaliana. The sequencing and the annotation of the Arabidopsis genome had allowed the identification of ten sequences that show a significant level of similarity with the AtPHO1 gene. These 10 genes, of unknown functions, constitute a new gene family called the AtPHO1 gene family. Based on a molecular and genetics study, this thesis reveals some information needed to understand the role of the AtPHO1 family members in the plant Arabidopsis. First, a bioinformatics study revealed that the AtPHO sequences contained, in the N-terminal hydrophilic region, a motif called SPX and conserved among multiple proteins involved in phosphate homeostasis in yeast. This finding reinforces the hypothesis that all AtPHO1 family members have, as AtPHO1, a role in phosphate homeostasis. In parallel, we identified the pattern of expression of AtPHO genes in Arabidopsis via analysis of transgenic plants expressing the uidA reporter gene under the control of respective AtPHO promoter regions. The results exhibit a predominant expression of AtPHO genes in vascular tissues of all organs of the plant, implying that these AtPHO genes could have redundant functions in the transfer of phosphate to the vascular cylinder of various organs. The GUS expression pattern for several AtPHO promoter regions was also detected in non-vascular tissue indicating a broad role of AtPHO genes in the acquisition or in the recycling of phosphate in the plant. In a second step, the analysis of the expression of AtPHO genes during phosphate starvation established that only the expression of the AtPHO1, AtPHO1; H1 and AtPHO1; H10 genes were regulated by Pi starvation. Interestingly, different signalling pathways appeared to regulate these three genes during various treatments affecting Pi homeostasis in the plant. The third chapter presents a detailed analysis of the signalling pathways regulating the expression of the AtPHO1; H10 gene in Arabidopsis leaves during wound and dehydrated stresses. Surprisingly, the expression of AtPHO1; H10 was found to be regulated by OPDA (the precursor of JA) but not by JA itself and via the COI1 protein (the central regulator of the JA signalling pathway). These results demonstrated for the first time that OPDA and JA could activate distinct genes via COI1-dependent pathways. Finally, this thesis presents the identification of a novel role of the AtPHO1 protein in the regulation of ABA action in Arabidopsis guard cells and during seed germination. Although the exact role and function of AtPHO1 still need to be determined, these last findings suggest that AtPHO1 and by extension other AtPHO proteins could mediate the propagation of various signals in the plant by modulating the membrane potential and/or by affecting cellular ion composition, as it is the case for many ion transporters or regulators of ion transport.
Resumo:
Intracardiac organization indices such as atrial fibril- lation (AF) cycle length (AFCL) have been used to track the efficiency of stepwise catheter ablation (step-CA) of long-standing persistent AF (pers-AF), however, with lim- ited success. The timing between nearby bipolar intracar- diac electrograms (EGMs) reflects the spatial dynamics of wavelets during AF. The extent of synchronization between EGMs is an indirect measure of AF spatial organization. The synchronization between nearby EGMs during step- CA of pers-AF was evaluated using new indices based on the cross-correlation. The first one (spar(W)) quantifies the sparseness of the cross-correlation of local activation times. The second one (OI(W)) reflects the local concen- tration around the largest peak of the cross-correlation. By computing their relative evolution during step-CA until AF termination (AF-term), we found that OI(W) appeared su- perior to AFCL and spar(W) to track the effect of step-CA "en route" to AF-term.
Resumo:
This paper proposes a field application of a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot in cable tracking task. The learning system is characterized by using a direct policy search method for learning the internal state/action mapping. Policy only algorithms may suffer from long convergence times when dealing with real robotics. In order to speed up the process, the learning phase has been carried out in a simulated environment and, in a second step, the policy has been transferred and tested successfully on a real robot. Future steps plan to continue the learning process on-line while on the real robot while performing the mentioned task. We demonstrate its feasibility with real experiments on the underwater robot ICTINEU AUV
A New Method for ECG Tracking of Persistent Atrial Fibrillation Termination during Stepwise Ablation
Resumo:
Stepwise radiofrequency catheter ablation (step-CA) has become the treatment of choice for the restoration of sinus rhythm (SR) in patients with long-standing persistent atrial fibrillation (pers-AF). Its success rate appears limited as the amount of ablation to achieve long term SR is unknown. Multiple organization indexes (OIs) have been previously developed to track the organization of AF during step-CA, however, with limited success. We report an adaptive method for tracking AF termination (AF-term) based on OIs characterizing the relationship between harmonic components of atrial activity from the surface ECG of AF activity. By computing their relative evolution during the last two steps preceding AF-term, we found that the performance of our OIs was superior to classical indices to track the efficiency of step-CA "en route" to AF-term. Our preliminary results suggest that the gradual synchronization between the fundamental and its first harmonic of AF activity appears as a promising parameter for predicting AF-term during step-CA.
Resumo:
RESUME Les améliorations méthodologiques des dernières décennies ont permis une meilleure compréhension de la motilité gastro-intestinale. Il manque toutefois une méthode qui permette de suivre la progression du chyme le long du tube gastro-intestinal. Pour permettre l'étude de la motilité de tout le tractus digestif humain, une nouvelle technique, peu invasive, a été élaborée au Département de Physiologie, en collaboration avec l'EPFL. Appelée "Magnet Tracking", la technique est basée sur la détection du champ magnétique généré par des matériaux ferromagnétiques avalés. A cet usage, une pilule magnétique, une matrice de capteurs et un logiciel ont été développés. L'objet de ce travail est de démontrer la faisabilité d'un examen de la motilité gastro-intestinale chez l'Homme par cette méthode. L'aimant est un cylindre (ø 6x7 mm, 0.2 cm3) protégé par une gaine de silicone. Le système de mesure est constitué d'une matrice de 4x4 capteurs et d'un ordinateur portable. Les capteurs fonctionnent sur l'effet Hall. Grâce à l'interface informatique, l'évolution de la position de l'aimant est suivie en temps réel à travers tout le tractus digestif. Sa position est exprimée en fonction du temps ou reproduite en 3-D sous forme d'une trajectoire. Différents programmes ont été crées pour analyser la dynamique des mouvements de l'aimant et caractériser la motilité digestive. Dix jeunes volontaires en bonne santé ont participé à l'étude. L'aimant a été avalé après une nuit de jeûne et son séjour intra digestif suivi pendant 2 jours consécutifs. Le temps moyen de mesure était de 34 heures. Chaque sujet a été examiné une fois sauf un qui a répété sept fois l'expérience. Les sujets restaient en décubitus dorsal, tranquilles et pouvaient interrompre la mesure s'ils le désiraient. Ils sont restés à jeûne le premier jour. L'évacuation de l'aimant a été contrôlée chez tous les sujets. Tous les sujets ont bien supporté l'examen. Le marqueur a pu être détecté de l'oesophage au rectum. La trajectoire ainsi constituée représente une conformation de l'anatomie digestive : une bonne superposition de celle-ci à l'anatomie est obtenue à partir des images de radiologie conventionnelle (CT-scan, lavement à la gastrografine). Les mouvements de l'aimant ont été caractérisés selon leur périodicité, leur amplitude ou leur vitesse pour chaque segment du tractus digestif. Ces informations physiologiques sont bien corrélées à celles obtenues par des méthodes établies d'étude de la motilité gastro-intestinale. Ce travail démontre la faisabilité d'un examen de la motilité gastro-intestinal chez l'Homme par la méthode de Magnet Tracking. La technique fournit les données anatomiques et permet d'analyser en temps réel la dynamique des mouvements du tube digestif. Cette méthode peu invasive ouvre d'intéressantes perspectives pour l'étude de motilité dans des conditions physiologiques et pathologiques. Des expériences visant à valider cette approche en tant que méthode clinique sont en voie de réalisation dans plusieurs centres en Suisse et à l'étranger. SUMMARY Methodological improvements realised over the last decades have permitted a better understanding of gastrointestinal motility. Nevertheless, a method allowing a continuous following of lumina' contents is still lacking. In order to study the human digestive tract motility, a new minimally invasive technique was developed at the Department of Physiology in collaboration with Swiss Federal Institute of Technology. The method is based on the detection of magnetic field generated by swallowed ferromagnetic materials. The aim of our work was to demonstrate the feasibility of this new approach to study the human gastrointestinal motility. The magnet used was a cylinder (ø6x7mm, 0.2 cm3) coated with silicon. The magnet tracking system consisted of a 4x4 matrix of sensors based on the Hall effect Signals from the sensors were digitised and sent to a laptop computer for processing and storage. Specific software was conceived to analyse in real time the progression of the magnet through the gastrointestinal tube. Ten young and healthy volunteers were enrolled in the study. After a fasting period of 12 hours, they swallowed the magnet. The pill was then tracked for two consecutive days for 34 hours on average. Each subject was studied once except one who was studied seven times. Every subject laid on his back for the entire experiment but could interrupt it at anytime. Evacuation of the magnet was controlled in all subjects. The examination was well tolerated. The pill could be followed from the esophagus to the rectum. The trajectory of the magnet represented a "mould" of the anatomy of the digestive tube: a good superimposition with radiological anatomy (gastrografin contrast and CT) was obtained. Movements of the magnet were characterized by periodicity, velocity, and amplitude of displacements for every segment of the digestive tract. The physiological information corresponded well to data from current methods of studying gastrointestinal motility. This work demonstrates the feasibility of the new approach in studies of human gastrointestinal motility. The technique allows to correlate in real time the dynamics of digestive movements with the anatomical data. This minimally invasive method is ready for studies of human gastrointestinal motility under physiological as well as pathological conditions. Studies aiming at validation of this new approach as a clinically relevant tool are being realised in several centres in Switzerland and abroad. Abstract: A new minimally invasive technique allowing for anatomical mapping and motility studies along the entire human digestive system is presented. The technique is based on continuous tracking of a small magnet progressing through the digestive tract. The coordinates of the magnet are calculated from signals recorded by 16 magnetic field sensors located over the abdomen. The magnet position, orientation and trajectory are displayed in real time. Ten young healthy volunteers were followed during 34 h. The technique was well tolerated and no complication was encountered, The information obtained was 3-D con-figuration of the digestive tract and dynamics of the magnet displacement (velocity, transit time, length estimation, rhythms). In the same individual, repea-ted examination gave very reproducible results. The anatomical and physiological information obtained corresponded well to data from current methods and imaging. This simple, minimally invasive technique permits examination of the entire digestive tract and is suitable for both research and clinical studies. In combination with other methods, it may represent a useful tool for studies of Cl motility with respect to normal and pathological conditions.
Resumo:
Three-dimensional imaging for the quantification of myocardial motion is a key step in the evaluation of cardiac disease. A tagged magnetic resonance imaging method that automatically tracks myocardial displacement in three dimensions is presented. Unlike other techniques, this method tracks both in-plane and through-plane motion from a single image plane without affecting the duration of image acquisition. A small z-encoding gradient is subsequently added to the refocusing lobe of the slice-selection gradient pulse in a slice following CSPAMM acquisition. An opposite polarity z-encoding gradient is added to the orthogonal tag direction. The additional z-gradients encode the instantaneous through plane position of the slice. The vertical and horizontal tags are used to resolve in-plane motion, while the added z-gradients is used to resolve through-plane motion. Postprocessing automatically decodes the acquired data and tracks the three-dimensional displacement of every material point within the image plane for each cine frame. Experiments include both a phantom and in vivo human validation. These studies demonstrate that the simultaneous extraction of both in-plane and through-plane displacements and pathlines from tagged images is achievable. This capability should open up new avenues for the automatic quantification of cardiac motion and strain for scientific and clinical purposes.
Resumo:
In this paper we present a new method to track bonemovements in stereoscopic X-ray image series of the kneejoint. The method is based on two different X-ray imagesets: a rotational series of acquisitions of the stillsubject knee that will allow the tomographicreconstruction of the three-dimensional volume (model),and a stereoscopic image series of orthogonal projectionsas the subject performs movements. Tracking the movementsof bones throughout the stereoscopic image series meansto determine, for each frame, the best pose of everymoving element (bone) previously identified in the 3Dreconstructed model. The quality of a pose is reflectedin the similarity between its simulated projections andthe actual radiographs. We use direct Fourierreconstruction to approximate the three-dimensionalvolume of the knee joint. Then, to avoid the expensivecomputation of digitally rendered radiographs (DRR) forpose recovery, we reformulate the tracking problem in theFourier domain. Under the hypothesis of parallel X-raybeams, we use the central-slice-projection theorem toreplace the heavy 2D-to-3D registration of projections inthe signal domain by efficient slice-to-volumeregistration in the Fourier domain. Focusing onrotational movements, the translation-relevant phaseinformation can be discarded and we only consider scalarFourier amplitudes. The core of our motion trackingalgorithm can be implemented as a classical frame-wiseslice-to-volume registration task. Preliminary results onboth synthetic and real images confirm the validity ofour approach.
Resumo:
Neuronal oscillations are an important aspect of EEG recordings. These oscillations are supposed to be involved in several cognitive mechanisms. For instance, oscillatory activity is considered a key component for the top-down control of perception. However, measuring this activity and its influence requires precise extraction of frequency components. This processing is not straightforward. Particularly, difficulties with extracting oscillations arise due to their time-varying characteristics. Moreover, when phase information is needed, it is of the utmost importance to extract narrow-band signals. This paper presents a novel method using adaptive filters for tracking and extracting these time-varying oscillations. This scheme is designed to maximize the oscillatory behavior at the output of the adaptive filter. It is then capable of tracking an oscillation and describing its temporal evolution even during low amplitude time segments. Moreover, this method can be extended in order to track several oscillations simultaneously and to use multiple signals. These two extensions are particularly relevant in the framework of EEG data processing, where oscillations are active at the same time in different frequency bands and signals are recorded with multiple sensors. The presented tracking scheme is first tested with synthetic signals in order to highlight its capabilities. Then it is applied to data recorded during a visual shape discrimination experiment for assessing its usefulness during EEG processing and in detecting functionally relevant changes. This method is an interesting additional processing step for providing alternative information compared to classical time-frequency analyses and for improving the detection and analysis of cross-frequency couplings.
Resumo:
Introduction: Neuronal oscillations have been the focus of increasing interest in the neuroscientific community, in part because they have been considered as a possible integrating mechanism through which internal states can influence stimulus processing in a top-down way (Engel et al., 2001). Moreover, increasing evidence indicates that oscillations in different frequency bands interact with one other through coupling mechanisms (Jensen and Colgin, 2007). The existence and the importance of these cross-frequency couplings during various tasks have been verified by recent studies (Canolty et al., 2006; Lakatos et al., 2007). In this study, we measure the strength and directionality of two types of couplings - phase-amplitude couplings and phase-phase couplings - between various bands in EEG data recorded during an illusory contour experiment that were identified using a recently-proposed adaptive frequency tracking algorithm (Van Zaen et al., 2010). Methods: The data used in this study have been taken from a previously published study examining the spatiotemporal mechanisms of illusory contour processing (Murray et al., 2002). The EEG in the present study were from a subset of nine subjects. Each stimulus was composed of 'pac-man' inducers presented in two orientations: IC, when an illusory contour was present, and NC, when no contour could be detected. The signals recorded by the electrodes P2, P4, P6, PO4 and PO6 were averaged, and filtered into the following bands: 4-8Hz, 8-12Hz, 15-25Hz, 35-45Hz, 45-55Hz, 55-65Hz and 65-75Hz. An adaptive frequency tracking algorithm (Van Zaen et al., 2010) was then applied in each band in order to extract the main oscillation and estimate its frequency. This additional step ensures that clean phase information is obtained when taking the Hilbert transform. The frequency estimated by the tracker was averaged over sliding windows and then used to compare the two conditions. Two types of cross-frequency couplings were considered: phase-amplitude couplings and phase-phase couplings. Both types were measured with the phase locking value (PLV, Lachaux et al., 1999) over sliding windows. The phase-amplitude couplings were computed with the phase of the low frequency oscillation and the phase of the amplitude of the high frequency one. Different coupling coefficients were used when measuring phase-phase couplings in order to estimate different m:n synchronizations (4:3, 3:2, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1 and 9:1) and to take into account the frequency differences across bands. Moreover, the direction of coupling was estimated with a directionality index (Bahraminasab et al., 2008). Finally, the two conditions IC and NC were compared with ANOVAs with 'subject' as a random effect and 'condition' as a fixed effect. Before computing the statistical tests, the PLV values were transformed into approximately normal variables (Penny et al., 2008). Results: When comparing the mean estimated frequency across conditions, a significant difference was found only in the 4-8Hz band, such that the frequency within this band was significantly higher for IC than NC stimuli starting at ~250ms post-stimulus onset (Fig. 1; solid line shows IC and dashed line NC). Significant differences in phase-amplitude couplings were obtained only when the 4-8 Hz band was taken as the low frequency band. Moreover, in all significant situations, the coupling strength is higher for the NC than IC condition. An example of significant difference between conditions is shown in Fig. 2 for the phase-amplitude coupling between the 4-8Hz and 55-65Hz bands (p-value in top panel and mean PLV values in the bottom panel). A decrease in coupling strength was observed shortly after stimulus onset for both conditions and was greater for the condition IC. This phenomenon was observed with all other frequency bands. The results obtained for the phase-phase couplings were more complex. As for the phase-amplitude couplings, all significant differences were obtained when the 4-8Hz band was considered as the low frequency band. The stimulus condition exhibiting the higher coupling strength depended on the ratio of the coupling coefficients. When this ratio was small, the IC condition exhibited the higher phase-phase coupling strength. When this ratio was large, the NC condition exhibited the higher coupling strength. Fig. 3 shows the phase-phase couplings between the 4-8Hz and 35-45Hz bands for the coupling coefficient 6:1, and the coupling strength was significantly higher for the IC than NC condition. By contrast, for the coupling coefficient 9:1 the NC condition gave the higher coupling strength (Fig. 4). Control analyses verified that it is not a consequence of the frequency difference between the two conditions in the 4-8Hz band. The directionality measures indicated a transfer of information from the low frequency components towards the high frequency ones. Conclusions: Adaptive tracking is a feasible method for EEG analyses, revealing information both about stimulus-related differences and coupling patterns across frequencies. Theta oscillations play a central role in illusory shape processing and more generally in visual processing. The presence vs. absence of illusory shapes was paralleled by faster theta oscillations. Phase-amplitude couplings were decreased more for IC than NC and might be due to a resetting mechanism. The complex patterns in phase-phase coupling between theta and beta/gamma suggest that the contribution of these oscillations to visual binding and stimulus processing are not as straightforward as conventionally held. Causality analyses further suggest that theta oscillations drive beta/gamma oscillations (see also Schroeder and Lakatos, 2009). The present findings highlight the need for applying more sophisticated signal analyses in order to establish a fuller understanding of the functional role of neural oscillations.
Resumo:
We evaluated the performance of an optical camera based prospective motion correction (PMC) system in improving the quality of 3D echo-planar imaging functional MRI data. An optical camera and external marker were used to dynamically track the head movement of subjects during fMRI scanning. PMC was performed by using the motion information to dynamically update the sequence's RF excitation and gradient waveforms such that the field-of-view was realigned to match the subject's head movement. Task-free fMRI experiments on five healthy volunteers followed a 2×2×3 factorial design with the following factors: PMC on or off; 3.0mm or 1.5mm isotropic resolution; and no, slow, or fast head movements. Visual and motor fMRI experiments were additionally performed on one of the volunteers at 1.5mm resolution comparing PMC on vs PMC off for no and slow head movements. Metrics were developed to quantify the amount of motion as it occurred relative to k-space data acquisition. The motion quantification metric collapsed the very rich camera tracking data into one scalar value for each image volume that was strongly predictive of motion-induced artifacts. The PMC system did not introduce extraneous artifacts for the no motion conditions and improved the time series temporal signal-to-noise by 30% to 40% for all combinations of low/high resolution and slow/fast head movement relative to the standard acquisition with no prospective correction. The numbers of activated voxels (p<0.001, uncorrected) in both task-based experiments were comparable for the no motion cases and increased by 78% and 330%, respectively, for PMC on versus PMC off in the slow motion cases. The PMC system is a robust solution to decrease the motion sensitivity of multi-shot 3D EPI sequences and thereby overcome one of the main roadblocks to their widespread use in fMRI studies.
Resumo:
PURPOSE: Signal detection on 3D medical images depends on many factors, such as foveal and peripheral vision, the type of signal, and background complexity, and the speed at which the frames are displayed. In this paper, the authors focus on the speed with which radiologists and naïve observers search through medical images. Prior to the study, the authors asked the radiologists to estimate the speed at which they scrolled through CT sets. They gave a subjective estimate of 5 frames per second (fps). The aim of this paper is to measure and analyze the speed with which humans scroll through image stacks, showing a method to visually display the behavior of observers as the search is made as well as measuring the accuracy of the decisions. This information will be useful in the development of model observers, mathematical algorithms that can be used to evaluate diagnostic imaging systems. METHODS: The authors performed a series of 3D 4-alternative forced-choice lung nodule detection tasks on volumetric stacks of chest CT images iteratively reconstructed in lung algorithm. The strategy used by three radiologists and three naïve observers was assessed using an eye-tracker in order to establish where their gaze was fixed during the experiment and to verify that when a decision was made, a correct answer was not due only to chance. In a first set of experiments, the observers were restricted to read the images at three fixed speeds of image scrolling and were allowed to see each alternative once. In the second set of experiments, the subjects were allowed to scroll through the image stacks at will with no time or gaze limits. In both static-speed and free-scrolling conditions, the four image stacks were displayed simultaneously. All trials were shown at two different image contrasts. RESULTS: The authors were able to determine a histogram of scrolling speeds in frames per second. The scrolling speed of the naïve observers and the radiologists at the moment the signal was detected was measured at 25-30 fps. For the task chosen, the performance of the observers was not affected by the contrast or experience of the observer. However, the naïve observers exhibited a different pattern of scrolling than the radiologists, which included a tendency toward higher number of direction changes and number of slices viewed. CONCLUSIONS: The authors have determined a distribution of speeds for volumetric detection tasks. The speed at detection was higher than that subjectively estimated by the radiologists before the experiment. The speed information that was measured will be useful in the development of 3D model observers, especially anthropomorphic model observers which try to mimic human behavior.