987 resultados para Statistical Methodology
Resumo:
Tese apresentada como requisito parcial para obtenção do grau de Doutor em Estatística e Gestão de Informação pelo Instituto Superior de Estatística e Gestão de Informação da Universidade Nova de Lisboa
Resumo:
RESUMO: A estrutura demográfica portuguesa é marcada por baixas taxas de natalidade e mortalidade, onde a população idosa representa uma fatia cada vez mais representativa, fruto de uma maior longevidade. A incidência do cancro, na sua generalidade, é maior precisamente nessa classe etária. A par de outras doenças igualmente lesivas (e.g. cardiovasculares, degenerativas) cuja incidência aumenta com a idade, o cancro merece relevo. Estudos epidemiológicos apresentam o cancro como líder mundial na mortalidade. Em países desenvolvidos, o seu peso representa 25% do número total de óbitos, percentagem essa que mais que duplica noutros países. A obesidade, a baixa ingestão de frutas e vegetais, o sedentarismo, o consumo de tabaco e a ingestão de álcool, configuram-se como cinco dos fatores de risco presentes em 30% das mortes diagnosticadas por cancro. A nível mundial e, em particular no Sul de Portugal, os cancros do estômago, recto e cólon apresentam elevadas taxas de incidência e de mortalidade. Do ponto de vista estritamente económico, o cancro é a doença que mais recursos consome enquanto que do ponto de vista físico e psicológico é uma doença que não limita o seu raio de ação ao doente. O cancro é, portanto, uma doença sempre atual e cada vez mais presente, pois reflete os hábitos e o ambiente de uma sociedade, não obstante as características intrínsecas a cada indivíduo. A adoção de metodologia estatística aplicada à modelação de dados oncológicos é, sobretudo, valiosa e pertinente quando a informação é oriunda de Registos de Cancro de Base Populacional (RCBP). A pertinência é justificada pelo fato destes registos permitirem aferir numa população específica, o risco desta sofrer e/ou vir a sofrer de uma dada neoplasia. O peso que as neoplasias do estômago, cólon e recto assumem foi um dos elementos que motivou o presente estudo que tem por objetivo analisar tendências, projeções, sobrevivências relativas e a distribuição espacial destas neoplasias. Foram considerados neste estudo todos os casos diagnosticados no período 1998-2006, pelo RCBP da região sul de Portugal (ROR-Sul). O estudo descritivo inicial das taxas de incidência e da tendência em cada uma das referidas neoplasias teve como base uma única variável temporal - o ano de diagnóstico - também designada por período. Todavia, uma metodologia que contemple apenas uma única variável temporal é limitativa. No cancro, para além do período, a idade à data do diagnóstico e a coorte de nascimento, são variáveis temporais que poderão prestar um contributo adicional na caracterização das taxas de incidência. A relevância assumida por estas variáveis temporais justificou a sua inclusão numaclasse de modelos designada por modelos Idade-Período-Coorte (Age-Period-Cohort models - APC), utilizada na modelação das taxas de incidência para as neoplasias em estudo. Os referidos modelos permitem ultrapassar o problema de relações não lineares e/ou de mudanças súbitas na tendência linear das taxas. Nos modelos APC foram consideradas a abordagem clássica e a abordagem com recurso a funções suavizadoras. A modelação das taxas foi estratificada por sexo. Foram ainda estudados os respectivos submodelos (apenas com uma ou duas variáveis temporais). Conhecido o comportamento das taxas de incidência, uma questão subsequente prende-se com a sua projeção em períodos futuros. Porém, o efeito de mudanças estruturais na população, ao qual Portugal não é alheio, altera substancialmente o número esperado de casos futuros com cancro. Estimativas da incidência de cancro a nível mundial obtidas a partir de projeções demográficas apontam para um aumento de 25% dos casos de cancro nas próximas duas décadas. Embora a projeção da incidência esteja associada a alguma incerteza, as projeções auxiliam no planeamento de políticas de saúde para a afetação de recursos e permitem a avaliação de cenários e de intervenções que tenham como objetivo a redução do impacto do cancro. O desconhecimento de projeções da taxa de incidência destas neoplasias na área abrangida pelo ROR-Sul, levou à utilização de modelos de projeção que diferem entre si quanto à sua estrutura, linearidade (ou não) dos seus coeficientes e comportamento das taxas na série histórica de dados (e.g. crescente, decrescente ou estável). Os referidos modelos pautaram-se por duas abordagens: (i)modelos lineares no que concerne ao tempo e (ii) extrapolação de efeitos temporais identificados pelos modelos APC para períodos futuros. Foi feita a projeção das taxas de incidência para os anos de 2007 a 2010 tendo em conta o género, idade e neoplasia. É ainda apresentada uma estimativa do impacto económico destas neoplasias no período de projeção. Uma questão pertinente e habitual no contexto clínico e a que o presente estudo pretende dar resposta, reside em saber qual a contribuição da neoplasia em si para a sobrevivência do doente. Nesse sentido, a mortalidade por causa específica é habitualmente utilizada para estimar a mortalidade atribuível apenas ao cancro em estudo. Porém, existem muitas situações em que a causa de morte é desconhecida e, mesmo que esta informação esteja disponível através dos certificados de óbito, não é fácil distinguir os casos em que a principal causa de morte é devida ao cancro. A sobrevivência relativa surge como uma medida objetiva que não necessita do conhecimento da causa específica da morte para o seu cálculo e dar-nos-á uma estimativa da probabilidade de sobrevivência caso o cancro em análise, num cenário hipotético, seja a única causa de morte. Desconhecida a principal causa de morte nos casos diagnosticados com cancro no registo ROR-Sul, foi determinada a sobrevivência relativa para cada uma das neoplasias em estudo, para um período de follow-up de 5 anos, tendo em conta o sexo, a idade e cada uma das regiões que constituem o registo. Foi adotada uma análise por período e as abordagens convencional e por modelos. No epílogo deste estudo, é analisada a influência da variabilidade espaço-temporal nas taxas de incidência. O longo período de latência das doenças oncológicas, a dificuldade em identificar mudanças súbitas no comportamento das taxas, populações com dimensão e riscos reduzidos, são alguns dos elementos que dificultam a análise da variação temporal das taxas. Nalguns casos, estas variações podem ser reflexo de flutuações aleatórias. O efeito da componente temporal aferida pelos modelos APC dá-nos um retrato incompleto da incidência do cancro. A etiologia desta doença, quando conhecida, está associada com alguma frequência a fatores de risco tais como condições socioeconómicas, hábitos alimentares e estilo de vida, atividade profissional, localização geográfica e componente genética. O “contributo”, dos fatores de risco é, por vezes, determinante e não deve ser ignorado. Surge, assim, a necessidade em complementar o estudo temporal das taxas com uma abordagem de cariz espacial. Assim, procurar-se-á aferir se as variações nas taxas de incidência observadas entre os concelhos inseridos na área do registo ROR-Sul poderiam ser explicadas quer pela variabilidade temporal e geográfica quer por fatores socioeconómicos ou, ainda, pelos desiguais estilos de vida. Foram utilizados os Modelos Bayesianos Hierárquicos Espaço-Temporais com o objetivo de identificar tendências espaço-temporais nas taxas de incidência bem como quantificar alguns fatores de risco ajustados à influência simultânea da região e do tempo. Os resultados obtidos pela implementação de todas estas metodologias considera-se ser uma mais valia para o conhecimento destas neoplasias em Portugal.------------ABSTRACT: mortality rates, with the elderly being an increasingly representative sector of the population, mainly due to greater longevity. The incidence of cancer, in general, is greater precisely in that age group. Alongside with other equally damaging diseases (e.g. cardiovascular,degenerative), whose incidence rates increases with age, cancer is of special note. In epidemiological studies, cancer is the global leader in mortality. In developed countries its weight represents 25% of the total number of deaths, with this percentage being doubled in other countries. Obesity, a reduce consumption of fruit and vegetables, physical inactivity, smoking and alcohol consumption, are the five risk factors present in 30% of deaths due to cancer. Globally, and in particular in the South of Portugal, the stomach, rectum and colon cancer have high incidence and mortality rates. From a strictly economic perspective, cancer is the disease that consumes more resources, while from a physical and psychological point of view, it is a disease that is not limited to the patient. Cancer is therefore na up to date disease and one of increased importance, since it reflects the habits and the environment of a society, regardless the intrinsic characteristics of each individual. The adoption of statistical methodology applied to cancer data modelling is especially valuable and relevant when the information comes from population-based cancer registries (PBCR). In such cases, these registries allow for the assessment of the risk and the suffering associated to a given neoplasm in a specific population. The weight that stomach, colon and rectum cancers assume in Portugal was one of the motivations of the present study, that focus on analyzing trends, projections, relative survival and spatial distribution of these neoplasms. The data considered in this study, are all cases diagnosed between 1998 and 2006, by the PBCR of Portugal, ROR-Sul.Only year of diagnosis, also called period, was the only time variable considered in the initial descriptive analysis of the incidence rates and trends for each of the three neoplasms considered. However, a methodology that only considers one single time variable will probably fall short on the conclusions that could be drawn from the data under study. In cancer, apart from the variable period, the age at diagnosis and the birth cohort are also temporal variables and may provide an additional contribution to the characterization of the incidence. The relevance assumed by these temporal variables justified its inclusion in a class of models called Age-Period-Cohort models (APC). This class of models was used for the analysis of the incidence rates of the three cancers under study. APC models allow to model nonlinearity and/or sudden changes in linear relationships of rate trends. Two approaches of APC models were considered: the classical and the one using smoothing functions. The models were stratified by gender and, when justified, further studies explored other sub-models where only one or two temporal variables were considered. After the analysis of the incidence rates, a subsequent goal is related to their projections in future periods. Although the effect of structural changes in the population, of which Portugal is not oblivious, may substantially change the expected number of future cancer cases, the results of these projections could help planning health policies with the proper allocation of resources, allowing for the evaluation of scenarios and interventions that aim to reduce the impact of cancer in a population. Worth noting that cancer incidence worldwide obtained from demographic projections point out to an increase of 25% of cancer cases in the next two decades. The lack of projections of incidence rates of the three cancers under study in the area covered by ROR-Sul, led us to use a variety of forecasting models that differ in the nature and structure. For example, linearity or nonlinearity in their coefficients and the trend of the incidence rates in historical data series (e.g. increasing, decreasing or stable).The models followed two approaches: (i) linear models regarding time and (ii) extrapolation of temporal effects identified by the APC models for future periods. The study provide incidence rates projections and the numbers of newly diagnosed cases for the year, 2007 to 2010, taking into account gender, age and the type of cancer. In addition, an estimate of the economic impact of these neoplasms is presented for the projection period considered. This research also try to address a relevant and common clinical question in these type of studies, regarding the contribution of the type of cancer to the patient survival. In such studies, the primary cause of death is commonly used to estimate the mortality specifically due to the cancer. However, there are many situations in which the cause of death is unknown, or, even if this information is available through the death certificates, it is not easy to distinguish the cases where the primary cause of death is the cancer. With this in mind, the relative survival is an alternative measure that does not need the knowledge of the specific cause of death to be calculated. This estimate will represent the survival probability in the hypothetical scenario of a certain cancer be the only cause of death. For the patients with unknown cause of death that were diagnosed with cancer in the ROR-Sul, the relative survival was calculated for each of the cancers under study, for a follow-up period of 5 years, considering gender, age and each one of the regions that are part the registry. A period analysis was undertaken, considering both the conventional and the model approaches. In final part of this study, we analyzed the influence of space-time variability in the incidence rates. The long latency period of oncologic diseases, the difficulty in identifying subtle changes in the rates behavior, populations of reduced size and low risk are some of the elements that can be a challenge in the analysis of temporal variations in rates, that, in some cases, can reflect simple random fluctuations. The effect of the temporal component measured by the APC models gives an incomplete picture of the cancer incidence. The etiology of this disease, when known, is frequently associated to risk factors such as socioeconomic conditions, eating habits and lifestyle, occupation, geographic location and genetic component. The "contribution"of such risk factors is sometimes decisive in the evolution of the disease and should not be ignored. Therefore, there was the need to consider an additional approach in this study, one of spatial nature, addressing the fact that changes in incidence rates observed in the ROR-Sul area, could be explained either by temporal and geographical variability or by unequal socio-economic or lifestyle factors. Thus, Bayesian hierarchical space-time models were used with the purpose of identifying space-time trends in incidence rates together with the the analysis of the effect of the risk factors considered in the study. The results obtained and the implementation of all these methodologies are considered to be an added value to the knowledge of these neoplasms in Portugal.
Resumo:
A statistical methodology is developed by which realised outcomes can be used to identify, for calendar years between 1974 and 2012, when policy makers in ‘advanced’ economies have successfully pursued single objectives of different kinds, or multiple objectives. A simple criterion is then used to distinguish between multiple objectives pure and simple and multiple objectives subject to a price stability constraint. The overall and individual country results which this methodology produces seem broadly plausible. Unconditional and conditional analyses of the inflation and growth associated with different types of objectives reveal that multiple objectives subject to a price stability constraint are associated with roughly as good economic performance as the single objective of inflation. A proposal is then made as to how the remit of an inflation-targeting central bank could be adjusted to allow it to pursue other objectives in extremis without losing the credibility effects associated with inflation targeting.
Resumo:
A sound statistical methodology is presented for modelling the correspondence between the characteristics of individuals, their thermal environment, and their thermal sensation. The proposed methodology substantially improves that developed by P.O. Fanger, by formulating a more general and precise model of thermal comfort. It enables us to estimate the model from a sample of data where all the parameters of comfort vary at the same time, which is not possible with that adopted by Fanger. Moreover, the present model is still valid when thermal conditions are far from optimum. (C) 1997 Elsevier Science Ltd.
Resumo:
A compositional time series is obtained when a compositional data vector is observed atdifferent points in time. Inherently, then, a compositional time series is a multivariatetime series with important constraints on the variables observed at any instance in time.Although this type of data frequently occurs in situations of real practical interest, atrawl through the statistical literature reveals that research in the field is very much in itsinfancy and that many theoretical and empirical issues still remain to be addressed. Anyappropriate statistical methodology for the analysis of compositional time series musttake into account the constraints which are not allowed for by the usual statisticaltechniques available for analysing multivariate time series. One general approach toanalyzing compositional time series consists in the application of an initial transform tobreak the positive and unit sum constraints, followed by the analysis of the transformedtime series using multivariate ARIMA models. In this paper we discuss the use of theadditive log-ratio, centred log-ratio and isometric log-ratio transforms. We also presentresults from an empirical study designed to explore how the selection of the initialtransform affects subsequent multivariate ARIMA modelling as well as the quality ofthe forecasts
Resumo:
Forest fire sequences can be modelled as a stochastic point process where events are characterized by their spatial locations and occurrence in time. Cluster analysis permits the detection of the space/time pattern distribution of forest fires. These analyses are useful to assist fire-managers in identifying risk areas, implementing preventive measures and conducting strategies for an efficient distribution of the firefighting resources. This paper aims to identify hot spots in forest fire sequences by means of the space-time scan statistics permutation model (STSSP) and a geographical information system (GIS) for data and results visualization. The scan statistical methodology uses a scanning window, which moves across space and time, detecting local excesses of events in specific areas over a certain period of time. Finally, the statistical significance of each cluster is evaluated through Monte Carlo hypothesis testing. The case study is the forest fires registered by the Forest Service in Canton Ticino (Switzerland) from 1969 to 2008. This dataset consists of geo-referenced single events including the location of the ignition points and additional information. The data were aggregated into three sub-periods (considering important preventive legal dispositions) and two main ignition-causes (lightning and anthropogenic causes). Results revealed that forest fire events in Ticino are mainly clustered in the southern region where most of the population is settled. Our analysis uncovered local hot spots arising from extemporaneous arson activities. Results regarding the naturally-caused fires (lightning fires) disclosed two clusters detected in the northern mountainous area.
Resumo:
The application of Discriminant function analysis (DFA) is not a new idea in the studyof tephrochrology. In this paper, DFA is applied to compositional datasets of twodifferent types of tephras from Mountain Ruapehu in New Zealand and MountainRainier in USA. The canonical variables from the analysis are further investigated witha statistical methodology of change-point problems in order to gain a betterunderstanding of the change in compositional pattern over time. Finally, a special caseof segmented regression has been proposed to model both the time of change and thechange in pattern. This model can be used to estimate the age for the unknown tephrasusing Bayesian statistical calibration
Resumo:
En este artículo abordamos el uso y la importancia de las herramientas estadísticas que se utilizan principalmente en los estudios médicos del ámbito de la oncología y la hematología, pero aplicables a muchos otros campos tanto médicos como experimentales o industriales. El objetivo del presente trabajo es presentar de una manera clara y precisa la metodología estadística necesaria para analizar los datos obtenidos en los estudios rigurosa y concisamente en cuanto a las hipótesis de trabajo planteadas por los investigadores. La medida de la respuesta al tratamiento elegidas en al tipo de estudio elegido determinarán los métodos estadísticos que se utilizarán durante el análisis de los datos del estudio y también el tamaño de muestra. Mediante la correcta aplicación del análisis estadístico y de una adecuada planificación se puede determinar si la relación encontrada entre la exposición a un tratamiento y un resultado es casual o por el contrario, está sujeto a una relación no aleatoria que podría establecer una relación de causalidad. Hemos estudiado los principales tipos de diseño de los estudios médicos más utilizados, tales como ensayos clínicos y estudios observacionales (cohortes, casos y controles, estudios de prevalencia y estudios ecológicos). También se presenta una sección sobre el cálculo del tamaño muestral de los estudios y cómo calcularlo, ¿Qué prueba estadística debe utilizarse?, los aspectos sobre fuerza del efecto ¿odds ratio¿ (OR) y riesgo relativo (RR), el análisis de supervivencia. Se presentan ejemplos en la mayoría de secciones del artículo y bibliografía más relevante.
Resumo:
Already in ancient Greece, Hippocrates postulated that disease showed a seasonal pattern characterised by excess winter mortality. Since then, several studies have confirmed this finding, and it was generally accepted that the increase in winter mortality was mostly due to respiratory infections and seasonal influenza. More recently, it was shown that cardiovascular disease (CVD) mortality also displayed such seasonality, and that the magnitude of the seasonal effect increased from the poles to the equator. The recent study by Yang et al assessed CVD mortality attributable to ambient temperature using daily data from 15 cities in China for years 2007-2013, including nearly two million CVD deaths. A high temperature variability between and within cities can be observed (figure 1). They used sophisticated statistical methodology to account for the complex temperature-mortality relationship; first, distributed lag non-linear models combined with quasi-Poisson regression to obtain city-specific estimates, taking into account temperature, relative humidity and atmospheric pressure; then, a meta-analysis to obtain the pooled estimates. The results confirm the winter excess mortality as reported by the Eurowinter3 and other4 groups, but they show that the magnitude of ambient temperature.
Différents procédés statistiques pour détecter la non-stationnarité dans les séries de précipitation
Resumo:
Ce mémoire a pour objectif de déterminer si les précipitations convectives estivales simulées par le modèle régional canadien du climat (MRCC) sont stationnaires ou non à travers le temps. Pour répondre à cette question, nous proposons une méthodologie statistique de type fréquentiste et une de type bayésien. Pour l'approche fréquentiste, nous avons utilisé le contrôle de qualité standard ainsi que le CUSUM afin de déterminer si la moyenne a augmenté à travers les années. Pour l'approche bayésienne, nous avons comparé la distribution a posteriori des précipitations dans le temps. Pour ce faire, nous avons modélisé la densité \emph{a posteriori} d'une période donnée et nous l'avons comparée à la densité a posteriori d'une autre période plus éloignée dans le temps. Pour faire la comparaison, nous avons utilisé une statistique basée sur la distance d'Hellinger, la J-divergence ainsi que la norme L2. Au cours de ce mémoire, nous avons utilisé l'ARL (longueur moyenne de la séquence) pour calibrer et pour comparer chacun de nos outils. Une grande partie de ce mémoire sera donc dédiée à l'étude de l'ARL. Une fois nos outils bien calibrés, nous avons utilisé les simulations pour les comparer. Finalement, nous avons analysé les données du MRCC pour déterminer si elles sont stationnaires ou non.
Resumo:
The application of Discriminant function analysis (DFA) is not a new idea in the study of tephrochrology. In this paper, DFA is applied to compositional datasets of two different types of tephras from Mountain Ruapehu in New Zealand and Mountain Rainier in USA. The canonical variables from the analysis are further investigated with a statistical methodology of change-point problems in order to gain a better understanding of the change in compositional pattern over time. Finally, a special case of segmented regression has been proposed to model both the time of change and the change in pattern. This model can be used to estimate the age for the unknown tephras using Bayesian statistical calibration
Resumo:
A compositional time series is obtained when a compositional data vector is observed at different points in time. Inherently, then, a compositional time series is a multivariate time series with important constraints on the variables observed at any instance in time. Although this type of data frequently occurs in situations of real practical interest, a trawl through the statistical literature reveals that research in the field is very much in its infancy and that many theoretical and empirical issues still remain to be addressed. Any appropriate statistical methodology for the analysis of compositional time series must take into account the constraints which are not allowed for by the usual statistical techniques available for analysing multivariate time series. One general approach to analyzing compositional time series consists in the application of an initial transform to break the positive and unit sum constraints, followed by the analysis of the transformed time series using multivariate ARIMA models. In this paper we discuss the use of the additive log-ratio, centred log-ratio and isometric log-ratio transforms. We also present results from an empirical study designed to explore how the selection of the initial transform affects subsequent multivariate ARIMA modelling as well as the quality of the forecasts
Resumo:
La concentración de ácido láctico en LCR en pacientes con sospecha de meningitis postquirúrgica luego de clipaje de aneurisma cerebral y hemorragia subaracnoidea espontánea se midió prospectivamente por un período de tres años. Se analizaron un total de 32 muestras de líquido cefalorraquídeo, se midió la concentración de ácido láctico y se comparó con el cultivo de LCR. Los cultivos fueron positivos en cinco pacientes, con una prevalencia de infección del 15%. Se utilizó un valor umbral de ácido láctico de 4 mmol/L. y se encontró una sensibilidad del 80%, especificidad del 52%, VPP del 23%, VPN del 93%, y likelihood ratio (LHR) positivo de 1,66 con una probabilidad post test de 15% de la concentración del ácido láctico en el diagnóstico de meningitis postquirúrgica en pacientes con hemorragia subaracnoidea aneurismática. La concentración de ácido láctico en LCR tiene un desempeño limitado en el diagnóstico de meningitis postquirúrgica en pacientes con hemorragia subaracnoidea aneurismática.
Resumo:
Introducción: La disminución de flujo en los vasos coronarios sin presencia de oclusión, es conocido como fenómeno de no reflujo, se observa después de la reperfusión, su presentación oscila entre el 5% y el 50% dependiendo de la población y de los criterios diagnósticos, dicho suceso es de mal pronóstico, aumenta el riesgo de morir en los primeros 30 días posterior a la angioplastia (RR 2,1 p 0,038), y se relaciona con falla cardiaca y arritmias, por eso al identificar los factores a los cuales se asocia, se podrán implementar terapias preventivas. Metodología: Estudio de casos y controles pareado por médico que valoró el evento, para garantizar que no existieron variaciones inter observador, con una razón 1:4 (18:72), realizado para identificar factores asociados a la presencia de no reflujo en pacientes llevados a angioplastia, entre noviembre de 2010 y mayo de 2014, en la Clínica San Rafael de Bogotá, D.C. Resultados: La frecuencia del no reflujo fue del 2.89%. El Infarto Agudo de Miocardio con elevación del ST (IAMCEST) fue la única variable que mostró una asociación estadísticamente significativa con este suceso, valor de p 0,002, OR 8,7, IC 95% (2,0 – 36,7). Discusión: El fenómeno de no reflujo en esta población se comportó de manera similar a lo descrito en la literatura, siendo el IAMCEST un factor fuertemente asociado.
Resumo:
This note considers the variance estimation for population size estimators based on capture–recapture experiments. Whereas a diversity of estimators of the population size has been suggested, the question of estimating the associated variances is less frequently addressed. This note points out that the technique of conditioning can be applied here successfully which also allows us to identify sources of variation: the variance due to estimation of the model parameters and the binomial variance due to sampling n units from a population of size N. It is applied to estimators typically used in capture–recapture experiments in continuous time including the estimators of Zelterman and Chao and improves upon previously used variance estimators. In addition, knowledge of the variances associated with the estimators by Zelterman and Chao allows the suggestion of a new estimator as the weighted sum of the two. The decomposition of the variance into the two sources allows also a new understanding of how resampling techniques like the Bootstrap could be used appropriately. Finally, the sample size question for capture–recapture experiments is addressed. Since the variance of population size estimators increases with the sample size, it is suggested to use relative measures such as the observed-to-hidden ratio or the completeness of identification proportion for approaching the question of sample size choice.