997 resultados para Spin-orbit effects
Resumo:
Spin polarization is a key characteristic in developing spintronic devices. Diluted magnetic heterostructures (DMH), where subsequent layers of conventional and diluted magnetic semiconductors (DMS) are alternate, are one of the possible ways to obtain it. Si being the basis of modern electronics, Si or other group-IV DMH can be used to build spintronic devices directly integrated with conventional ones. In this work we study the physical properties and the spin-polarization effects of p-type DMH based in group-IV semiconductors (Si, Ge, SiGe, and SiC), by performing self-consistent (k) over right arrow . (p) over right arrow calculations in the local spin density approximation. We show that high spin polarization can be maintained in these structures below certain values of the carrier concentrations. Full spin polarization is attained in the low carrier concentration regime for carrier concentrations in the DMS layer up to similar to 2.0 x 10(19) cm(-3) for Si and up to similar to 6.0 x 10(19) cm(-3) for SiC. Partial, but still important spin polarization can be achieved for all studied group-IV DMH, with the exception of Ge for carrier concentrations up to 6.0 x 10(19) cm(-3). The role played by the effective masses and the energy splitting of the spin-orbit split-off hole bands is also discussed throughout the paper.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work, we study the effects of a longitudinal periodic potential on a parabolic quantum wire defined in a two-dimensional electron gas with Rashba spin-orbit interaction. For an infinite wire superlattice we find, by direct diagonalization, that the energy gaps are shifted away from the usual Bragg planes due to the Rashba spin-orbit interaction. Interestingly, our results show that the location of the band gaps in energy can be controlled via the strength of the Rashba spin-orbit interaction. We have also calculated the charge conductance through a periodic potential of a finite length via the nonequilibrium Green's function method combined with the Landauer formalism. We find dips in the conductance that correspond well to the energy gaps of the infinite wire superlattice. From the infinite wire energy dispersion, we derive an equation relating the location of the conductance dips as a function of the (gate controllable) Fermi energy to the Rashba spin-orbit coupling strength. We propose that the strength of the Rashba spin-orbit interaction can be extracted via a charge conductance measurement.
Resumo:
Diese Dissertation demonstriert und verbessert die Vorhersagekraft der Coupled-Cluster-Theorie im Hinblick auf die hochgenaue Berechnung von Moleküleigenschaften. Die Demonstration erfolgt mittels Extrapolations- und Additivitätstechniken in der Single-Referenz-Coupled-Cluster-Theorie, mit deren Hilfe die Existenz und Struktur von bisher unbekannten Molekülen mit schweren Hauptgruppenelementen vorhergesagt wird. Vor allem am Beispiel von cyclischem SiS_2, einem dreiatomigen Molekül mit 16 Valenzelektronen, wird deutlich, dass die Vorhersagekraft der Theorie sich heutzutage auf Augenhöhe mit dem Experiment befindet: Theoretische Überlegungen initiierten eine experimentelle Suche nach diesem Molekül, was schließlich zu dessen Detektion und Charakterisierung mittels Rotationsspektroskopie führte. Die Vorhersagekraft der Coupled-Cluster-Theorie wird verbessert, indem eine Multireferenz-Coupled-Cluster-Methode für die Berechnung von Spin-Bahn-Aufspaltungen erster Ordnung in 2^Pi-Zuständen entwickelt wird. Der Fokus hierbei liegt auf Mukherjee's Variante der Multireferenz-Coupled-Cluster-Theorie, aber prinzipiell ist das vorgeschlagene Berechnungsschema auf alle Varianten anwendbar. Die erwünschte Genauigkeit beträgt 10 cm^-1. Sie wird mit der neuen Methode erreicht, wenn Ein- und Zweielektroneneffekte und bei schweren Elementen auch skalarrelativistische Effekte berücksichtigt werden. Die Methode eignet sich daher in Kombination mit Coupled-Cluster-basierten Extrapolations-und Additivitätsschemata dafür, hochgenaue thermochemische Daten zu berechnen.
Resumo:
We study the helical edge states of a two-dimensional topological insulator without axial spin symmetry due to the Rashba spin-orbit interaction. Lack of axial spin symmetry can lead to so-called generic helical edge states, which have energy-dependent spin orientation. This opens the possibility of inelastic backscattering and thereby nonquantized transport. Here we find analytically the new dispersion relations and the energy dependent spin orientation of the generic helical edge states in the presence of Rashba spin-orbit coupling within the Bernevig-Hughes-Zhang model, for both a single isolated edge and for a finite width ribbon. In the single-edge case, we analytically quantify the energy dependence of the spin orientation, which turns out to be weak for a realistic HgTe quantum well. Nevertheless, finite size effects combined with Rashba spin-orbit coupling result in two avoided crossings in the energy dispersions, where the spin orientation variation of the edge states is very significantly increased for realistic parameters. Finally, our analytical results are found to compare well to a numerical tight-binding regularization of the model.
Resumo:
We construct and analyze a microscopic model for insulating rocksalt ordered double perovskites, with the chemical formula A(2)BB'O(6), where the B' atom has a 4d(1) or 5d(1) electronic configuration and forms a face-centered-cubic lattice. The combination of the triply degenerate t(2g) orbital and strong spin-orbit coupling forms local quadruplets with an effective spin moment j=3/2. Moreover, due to strongly orbital-dependent exchange, the effective spins have substantial biquadratic and bicubic interactions (fourth and sixth order in the spins, respectively). This leads, at the mean-field level, to three main phases: an unusual antiferromagnet with dominant octupolar order, a ferromagnetic phase with magnetization along the [110] direction, and a nonmagnetic but quadrupolar ordered phase, which is stabilized by thermal fluctuations and intermediate temperatures. All these phases have a two-sublattice structure described by the ordering wave vector Q=2 pi(001). We consider quantum fluctuations and argue that in the regime of dominant antiferromagnetic exchange, a nonmagnetic valence-bond solid or quantum-spin-liquid state may be favored instead. Candidate quantum-spin-liquid states and their basic properties are described. We also address the effect of single-site anisotropy driven by lattice distortions. Existing and possible future experiments are discussed in light of these results.
Resumo:
We investigate the intrinsic spin Hall effect in two-dimensional electron gases in quantum wells with two subbands, where a new intersubband-induced spin-orbit coupling is operative. The bulk spin Hall conductivity sigma(z)(xy) is calculated in the ballistic limit within the standard Kubo formalism in the presence of a magnetic field B and is found to remain finite in the B=0 limit, as long as only the lowest subband is occupied. Our calculated sigma(z)(xy) exhibits a nonmonotonic behavior and can change its sign as the Fermi energy (the carrier areal density n(2D)) is varied between the subband edges. We determine the magnitude of sigma(z)(xy) for realistic InSb quantum wells by performing a self-consistent calculation of the intersubband-induced spin-orbit coupling.
Resumo:
We theoretically investigate the Rashba spin-orbit interaction in InAs/GaSb quantum wells (QWs). We find that the Rashba spin-splitting (RSS) sensitively depends on the thickness of the InAs layer. The RSS exhibits nonlinear behavior for narrow InAs/GaSb QWs and the oscillating feature for wide InAs/GaSb QWs. The nonlinear and oscillating behaviors arise from the weakened and enhanced interband coupling. The RSS also show asymmetric features respect to the direction of the external electric field. (C) 2008 American Institute of Physics.
Resumo:
This is the first in a series of three articles which aimed to derive the matrix elements of the U(2n) generators in a multishell spin-orbit basis. This is a basis appropriate to many-electron systems which have a natural partitioning of the orbital space and where also spin-dependent terms are included in the Hamiltonian. The method is based on a new spin-dependent unitary group approach to the many-electron correlation problem due to Gould and Paldus [M. D. Gould and J. Paldus, J. Chem. Phys. 92, 7394, (1990)]. In this approach, the matrix elements of the U(2n) generators in the U(n) x U(2)-adapted electronic Gelfand basis are determined by the matrix elements of a single Ll(n) adjoint tensor operator called the del-operator, denoted by Delta(j)(i) (1 less than or equal to i, j less than or equal to n). Delta or del is a polynomial of degree two in the U(n) matrix E = [E-j(i)]. The approach of Gould and Paldus is based on the transformation properties of the U(2n) generators as an adjoint tensor operator of U(n) x U(2) and application of the Wigner-Eckart theorem. Hence, to generalize this approach, we need to obtain formulas for the complete set of adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis. The nonzero shift coefficients are uniquely determined and may he evaluated by the methods of Gould et al. [see the above reference]. In this article, we define zero-shift adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis which are appropriate to the many-electron problem. By definition, these are proportional to the corresponding two-shell del-operator matrix elements, and it is shown that the Racah factorization lemma applies. Formulas for these coefficients are then obtained by application of the Racah factorization lemma. The zero-shift adjoint reduced Wigner coefficients required for this procedure are evaluated first. All these coefficients are needed later for the multishell case, which leads directly to the two-shell del-operator matrix elements. Finally, we discuss an application to charge and spin densities in a two-shell molecular system. (C) 1998 John Wiley & Sons.
Resumo:
This is the second in a series of articles whose ultimate goal is the evaluation of the matrix elements (MEs) of the U(2n) generators in a multishell spin-orbit basis. This extends the existing unitary group approach to spin-dependent configuration interaction (CI) and many-body perturbation theory calculations on molecules to systems where there is a natural partitioning of the electronic orbital space. As a necessary preliminary to obtaining the U(2n) generator MEs in a multishell spin-orbit basis, we must obtain a complete set of adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis. The zero-shift coefficients were obtained in the first article of the series. in this article, we evaluate the nonzero shift adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis. We then demonstrate that the one-shell versions of these coefficients may be obtained by taking the Gelfand-Tsetlin limit of the two-shell formulas. These coefficients,together with the zero-shift types, then enable us to write down formulas for the U(2n) generator matrix elements in a two-shell spin-orbit basis. Ultimately, the results of the series may be used to determine the many-electron density matrices for a partitioned system. (C) 1998 John Wiley & Sons, Inc.
Resumo:
This is the third and final article in a series directed toward the evaluation of the U(2n) generator matrix elements (MEs) in a multishell spin/orbit basis. Such a basis is required for many-electron systems possessing a partitioned orbital space and where spin-dependence is important. The approach taken is based on the transformation properties of the U(2n) generators as an adjoint tensor operator of U(n) x U(2) and application of the Wigner-Eckart theorem. A complete set of adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis (which is appropriate to the many-electron problem) were obtained in the first and second articles of this series. Ln the first article we defined zero-shift coupling coefficients. These are proportional to the corresponding two-shell del-operator matrix elements. See P. J. Burton and and M. D. Gould, J. Chem. Phys., 104, 5112 (1996), for a discussion of the del-operator and its properties. Ln the second article of the series, the nonzero shift coupling coefficients were derived. Having obtained all the necessary coefficients, we now apply the formalism developed above to obtain the U(2n) generator MEs in a multishell spin-orbit basis. The methods used are based on the work of Gould et al. (see the above reference). (C) 1998 John Wiley & Sons, Inc.
Resumo:
The Sagnac effect is an important phase coherent effect in optical and atom interferometers where rotations of the interferometer with respect to an inertial reference frame result in a shift in the interference pattern proportional to the rotation rate. Here, we analyze the Sagnac effect in a mesoscopic semiconductor electron interferometer. We include in our analysis the Rashba spin-orbit interactions in the ring. Our results indicate that spin-orbit interactions increase the rotation-induced phase shift. We discuss the potential experimental observability of the Sagnac phase shift in such mesoscopic systems.
Resumo:
We comment on the recent results [Phys. Rev. B 70, 235314 (2004)] showing the dispersion relations of single-particle and collective excitations in quantum wires in the presence of the Rashba spin-orbit interaction (SOI). We claim that those calculations performed in the absence of SOI, and used as a strong reference to the interacting case, are unlikely to be correct. We show the correct omega-q plane of the system in the absence of Rashba SOI.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)