996 resultados para Spectral decomposition


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We extend the standard price discovery analysis to estimate the information share of dual-class shares across domestic and foreign markets. By examining both common and preferred shares, we aim to extract information not only about the fundamental value of the rm, but also about the dual-class premium. In particular, our interest lies on the price discovery mechanism regulating the prices of common and preferred shares in the BM&FBovespa as well as the prices of their ADR counterparts in the NYSE and in the Arca platform. However, in the presence of contemporaneous correlation between the innovations, the standard information share measure depends heavily on the ordering we attribute to prices in the system. To remain agnostic about which are the leading share class and market, one could for instance compute some weighted average information share across all possible orderings. This is extremely inconvenient given that we are dealing with 2 share prices in Brazil, 4 share prices in the US, plus the exchange rate (and hence over 5,000 permutations!). We thus develop a novel methodology to carry out price discovery analyses that does not impose any ex-ante assumption about which share class or trading platform conveys more information about shocks in the fundamental price. As such, our procedure yields a single measure of information share, which is invariant to the ordering of the variables in the system. Simulations of a simple market microstructure model show that our information share estimator works pretty well in practice. We then employ transactions data to study price discovery in two dual-class Brazilian stocks and their ADRs. We uncover two interesting ndings. First, the foreign market is at least as informative as the home market. Second, shocks in the dual-class premium entail a permanent e ect in normal times, but transitory in periods of nancial distress. We argue that the latter is consistent with the expropriation of preferred shareholders as a class.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Diese Arbeit widmet sich den Darstellungssätzen für symmetrische indefinite (das heißt nicht-halbbeschränkte) Sesquilinearformen und deren Anwendungen. Insbesondere betrachten wir den Fall, dass der zur Form assoziierte Operator keine Spektrallücke um Null besitzt. Desweiteren untersuchen wir die Beziehung zwischen reduzierenden Graphräumen, Lösungen von Operator-Riccati-Gleichungen und der Block-Diagonalisierung für diagonaldominante Block-Operator-Matrizen. Mit Hilfe der Darstellungssätze wird eine entsprechende Beziehung zwischen Operatoren, die zu indefiniten Formen assoziiert sind, und Form-Riccati-Gleichungen erreicht. In diesem Rahmen wird eine explizite Block-Diagonalisierung und eine Spektralzerlegung für den Stokes Operator sowie eine Darstellung für dessen Kern erreicht. Wir wenden die Darstellungssätze auf durch (grad u, h() grad v) gegebene Formen an, wobei Vorzeichen-indefinite Koeffzienten-Matrizen h() zugelassen sind. Als ein Resultat werden selbstadjungierte indefinite Differentialoperatoren div h() grad mit homogenen Dirichlet oder Neumann Randbedingungen konstruiert. Beispiele solcher Art sind Operatoren die in der Modellierung von optischen Metamaterialien auftauchen und links-indefinite Sturm-Liouville Operatoren.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A lo largo del presente trabajo se investiga la viabilidad de la descomposición automática de espectros de radiación gamma por medio de algoritmos de resolución de sistemas de ecuaciones algebraicas lineales basados en técnicas de pseudoinversión. La determinación de dichos algoritmos ha sido realizada teniendo en cuenta su posible implementación sobre procesadores de propósito específico de baja complejidad. En el primer capítulo se resumen las técnicas para la detección y medida de la radiación gamma que han servido de base para la confección de los espectros tratados en el trabajo. Se reexaminan los conceptos asociados con la naturaleza de la radiación electromagnética, así como los procesos físicos y el tratamiento electrónico que se hallan involucrados en su detección, poniendo de relieve la naturaleza intrínsecamente estadística del proceso de formación del espectro asociado como una clasificación del número de detecciones realizadas en función de la energía supuestamente continua asociada a las mismas. Para ello se aporta una breve descripción de los principales fenómenos de interacción de la radiación con la materia, que condicionan el proceso de detección y formación del espectro. El detector de radiación es considerado el elemento crítico del sistema de medida, puesto que condiciona fuertemente el proceso de detección. Por ello se examinan los principales tipos de detectores, con especial hincapié en los detectores de tipo semiconductor, ya que son los más utilizados en la actualidad. Finalmente, se describen los subsistemas electrónicos fundamentales para el acondicionamiento y pretratamiento de la señal procedente del detector, a la que se le denomina con el término tradicionalmente utilizado de Electrónica Nuclear. En lo que concierne a la espectroscopia, el principal subsistema de interés para el presente trabajo es el analizador multicanal, el cual lleva a cabo el tratamiento cualitativo de la señal, y construye un histograma de intensidad de radiación en el margen de energías al que el detector es sensible. Este vector N-dimensional es lo que generalmente se conoce con el nombre de espectro de radiación. Los distintos radionúclidos que participan en una fuente de radiación no pura dejan su impronta en dicho espectro. En el capítulo segundo se realiza una revisión exhaustiva de los métodos matemáticos en uso hasta el momento ideados para la identificación de los radionúclidos presentes en un espectro compuesto, así como para determinar sus actividades relativas. Uno de ellos es el denominado de regresión lineal múltiple, que se propone como la aproximación más apropiada a los condicionamientos y restricciones del problema: capacidad para tratar con espectros de baja resolución, ausencia del concurso de un operador humano (no supervisión), y posibilidad de ser soportado por algoritmos de baja complejidad capaces de ser instrumentados sobre procesadores dedicados de alta escala de integración. El problema del análisis se plantea formalmente en el tercer capítulo siguiendo las pautas arriba mencionadas y se demuestra que el citado problema admite una solución en la teoría de memorias asociativas lineales. Un operador basado en este tipo de estructuras puede proporcionar la solución al problema de la descomposición espectral deseada. En el mismo contexto, se proponen un par de algoritmos adaptativos complementarios para la construcción del operador, que gozan de unas características aritméticas especialmente apropiadas para su instrumentación sobre procesadores de alta escala de integración. La característica de adaptatividad dota a la memoria asociativa de una gran flexibilidad en lo que se refiere a la incorporación de nueva información en forma progresiva.En el capítulo cuarto se trata con un nuevo problema añadido, de índole altamente compleja. Es el del tratamiento de las deformaciones que introducen en el espectro las derivas instrumentales presentes en el dispositivo detector y en la electrónica de preacondicionamiento. Estas deformaciones invalidan el modelo de regresión lineal utilizado para describir el espectro problema. Se deriva entonces un modelo que incluya las citadas deformaciones como una ampliación de contribuciones en el espectro compuesto, el cual conlleva una ampliación sencilla de la memoria asociativa capaz de tolerar las derivas en la mezcla problema y de llevar a cabo un análisis robusto de contribuciones. El método de ampliación utilizado se basa en la suposición de pequeñas perturbaciones. La práctica en el laboratorio demuestra que, en ocasiones, las derivas instrumentales pueden provocar distorsiones severas en el espectro que no pueden ser tratadas por el modelo anterior. Por ello, en el capítulo quinto se plantea el problema de medidas afectadas por fuertes derivas desde el punto de vista de la teoría de optimización no lineal. Esta reformulación lleva a la introducción de un algoritmo de tipo recursivo inspirado en el de Gauss-Newton que permite introducir el concepto de memoria lineal realimentada. Este operador ofrece una capacidad sensiblemente mejorada para la descomposición de mezclas con fuerte deriva sin la excesiva carga computacional que presentan los algoritmos clásicos de optimización no lineal. El trabajo finaliza con una discusión de los resultados obtenidos en los tres principales niveles de estudio abordados, que se ofrecen en los capítulos tercero, cuarto y quinto, así como con la elevación a definitivas de las principales conclusiones derivadas del estudio y con el desglose de las posibles líneas de continuación del presente trabajo.---ABSTRACT---Through the present research, the feasibility of Automatic Gamma-Radiation Spectral Decomposition by Linear Algebraic Equation-Solving Algorithms using Pseudo-Inverse Techniques is explored. The design of the before mentioned algorithms has been done having into account their possible implementation on Specific-Purpose Processors of Low Complexity. In the first chapter, the techniques for the detection and measurement of gamma radiation employed to construct the spectra being used throughout the research are reviewed. Similarly, the basic concepts related with the nature and properties of the hard electromagnetic radiation are also re-examined, together with the physic and electronic processes involved in the detection of such kind of radiation, with special emphasis in the intrinsic statistical nature of the spectrum build-up process, which is considered as a classification of the number of individual photon-detections as a function of the energy associated to each individual photon. Fbr such, a brief description of the most important matter-energy interaction phenomena conditioning the detection and spectrum formation processes is given. The radiation detector is considered as the most critical element in the measurement system, as this device strongly conditions the detection process. Fbr this reason, the characteristics of the most frequent detectors are re-examined, with special emphasis on those of semiconductor nature, as these are the most frequently employed ones nowadays. Finally, the fundamental electronic subsystems for preaconditioning and treating of the signal delivered by the detector, classically addresed as Nuclear Electronics, is described. As far as Spectroscopy is concerned, the subsystem most interesting for the scope covered by the present research is the so-called Multichannel Analyzer, which is devoted to the cualitative treatment of the signal, building-up a hystogram of radiation intensity in the range of energies in which the detector is sensitive. The resulting N-dimensional vector is generally known with the ñame of Radiation Spectrum. The different radio-nuclides contributing to the spectrum of a composite source will leave their fingerprint in the resulting spectrum. Through the second chapter, an exhaustive review of the mathematical methods devised to the present moment to identify the radio-nuclides present in the composite spectrum and to quantify their relative contributions, is reviewed. One of the more popular ones is the so-known Múltiple Linear Regression, which is proposed as the best suited approach according to the constraints and restrictions present in the formulation of the problem, i.e., the need to treat low-resolution spectra, the absence of control by a human operator (un-supervision), and the possibility of being implemented as low-complexity algorithms amenable of being supported by VLSI Specific Processors. The analysis problem is formally stated through the third chapter, following the hints established in this context, and it is shown that the addressed problem may be satisfactorily solved under the point of view of Linear Associative Memories. An operator based on this kind of structures may provide the solution to the spectral decomposition problem posed. In the same context, a pair of complementary adaptive algorithms useful for the construction of the solving operator are proposed, which share certain special arithmetic characteristics that render them specially suitable for their implementation on VLSI Processors. The adaptive nature of the associative memory provides a high flexibility to this operator, in what refers to the progressive inclusión of new information to the knowledge base. Through the fourth chapter, this fact is treated together with a new problem to be considered, of a high interest but quite complex nature, as is the treatment of the deformations appearing in the spectrum when instrumental drifts in both the detecting device and the pre-acconditioning electronics are to be taken into account. These deformations render the Linear Regression Model proposed almost unuseful to describe the resulting spectrum. A new model including the drifts is derived as an extensión of the individual contributions to the composite spectrum, which implies a simple extensión of the Associative Memory, which renders this suitable to accept the drifts in the composite spectrum, thus producing a robust analysis of contributions. The extensión method is based on the Low-Amplitude Perturbation Hypothesis. Experimental practice shows that in certain cases the instrumental drifts may provoke severe distortions in the resulting spectrum, which can not be treated with the before-mentioned hypothesis. To cover also these less-frequent cases, through the fifth chapter, the problem involving strong drifts is treated under the point of view of Non-Linear Optimization Techniques. This reformulation carries the study to the consideration of recursive algorithms based on the Gauss-Newton methods, which allow the introduction of Feed-Back Memories, computing elements with a sensibly improved capability to decompose spectra affected by strong drifts. The research concludes with a discussion of the results obtained in the three main levéis of study considerad, which are presented in chapters third, fourth and fifth, toghether with the review of the main conclusions derived from the study and the outline of the main research lines opened by the present work.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Uma imagem engloba informação que precisa ser organizada para interpretar e compreender seu conteúdo. Existem diversas técnicas computacionais para extrair a principal informação de uma imagem e podem ser divididas em três áreas: análise de cor, textura e forma. Uma das principais delas é a análise de forma, por descrever características de objetos baseadas em seus pontos fronteira. Propomos um método de caracterização de imagens, por meio da análise de forma, baseada nas propriedades espectrais do laplaciano em grafos. O procedimento construiu grafos G baseados nos pontos fronteira do objeto, cujas conexões entre vértices são determinadas por limiares T_l. A partir dos grafos obtêm-se a matriz de adjacência A e a matriz de graus D, as quais definem a matriz Laplaciana L=D -A. A decomposição espectral da matriz Laplaciana (autovalores) é investigada para descrever características das imagens. Duas abordagens são consideradas: a) Análise do vetor característico baseado em limiares e a histogramas, considera dois parâmetros o intervalo de classes IC_l e o limiar T_l; b) Análise do vetor característico baseado em vários limiares para autovalores fixos; os quais representam o segundo e último autovalor da matriz L. As técnicas foram testada em três coleções de imagens: sintéticas (Genéricas), parasitas intestinais (SADPI) e folhas de plantas (CNShape), cada uma destas com suas próprias características e desafios. Na avaliação dos resultados, empregamos o modelo de classificação support vector machine (SVM), o qual avalia nossas abordagens, determinando o índice de separação das categorias. A primeira abordagem obteve um acerto de 90 % com a coleção de imagens Genéricas, 88 % na coleção SADPI, e 72 % na coleção CNShape. Na segunda abordagem, obtém-se uma taxa de acerto de 97 % com a coleção de imagens Genéricas; 83 % para SADPI e 86 % no CNShape. Os resultados mostram que a classificação de imagens a partir do espectro do Laplaciano, consegue categorizá-las satisfatoriamente.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The eigenvalue densities of two random matrix ensembles, the Wigner Gaussian matrices and the Wishart covariant matrices, are decomposed in the contributions of each individual eigenvalue distribution. It is shown that the fluctuations of all eigenvalues, for medium matrix sizes, are described with a good precision by nearly normal distributions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Frog protection has become increasingly essential due to the rapid decline of its biodiversity. Therefore, it is valuable to develop new methods for studying this biodiversity. In this paper, a novel feature extraction method is proposed based on perceptual wavelet packet decomposition for classifying frog calls in noisy environments. Pre-processing and syllable segmentation are first applied to the frog call. Then, a spectral peak track is extracted from each syllable if possible. Track duration, dominant frequency and oscillation rate are directly extracted from the track. With k-means clustering algorithm, the calculated dominant frequency of all frog species is clustered into k parts, which produce a frequency scale for wavelet packet decomposition. Based on the adaptive frequency scale, wavelet packet decomposition is applied to the frog calls. Using the wavelet packet decomposition coefficients, a new feature set named perceptual wavelet packet decomposition sub-band cepstral coefficients is extracted. Finally, a k-nearest neighbour (k-NN) classifier is used for the classification. The experiment results show that the proposed features can achieve an average classification accuracy of 97.45% which outperforms syllable features (86.87%) and Mel-frequency cepstral coefficients (MFCCs) feature (90.80%).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Environmental changes have put great pressure on biological systems leading to the rapid decline of biodiversity. To monitor this change and protect biodiversity, animal vocalizations have been widely explored by the aid of deploying acoustic sensors in the field. Consequently, large volumes of acoustic data are collected. However, traditional manual methods that require ecologists to physically visit sites to collect biodiversity data are both costly and time consuming. Therefore it is essential to develop new semi-automated and automated methods to identify species in automated audio recordings. In this study, a novel feature extraction method based on wavelet packet decomposition is proposed for frog call classification. After syllable segmentation, the advertisement call of each frog syllable is represented by a spectral peak track, from which track duration, dominant frequency and oscillation rate are calculated. Then, a k-means clustering algorithm is applied to the dominant frequency, and the centroids of clustering results are used to generate the frequency scale for wavelet packet decomposition (WPD). Next, a new feature set named adaptive frequency scaled wavelet packet decomposition sub-band cepstral coefficients is extracted by performing WPD on the windowed frog calls. Furthermore, the statistics of all feature vectors over each windowed signal are calculated for producing the final feature set. Finally, two well-known classifiers, a k-nearest neighbour classifier and a support vector machine classifier, are used for classification. In our experiments, we use two different datasets from Queensland, Australia (18 frog species from commercial recordings and field recordings of 8 frog species from James Cook University recordings). The weighted classification accuracy with our proposed method is 99.5% and 97.4% for 18 frog species and 8 frog species respectively, which outperforms all other comparable methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(styrene peroxide) has been prepared and characterized. Nuclear magnetlc resonance (NMR) spectra Of the polymer show the shift Of aliphatic protons. Differential scanning calorimetric (DSC) and differential thermal analysis (DTA) results show anexothermic peak around 110 OC which is characteristic of peroxide decomposition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

EEG recordings are often contaminated with ocular artifacts such as eye blinks and eye movements. These artifacts may obscure underlying brain activity in the electroencephalogram (EEG) data and make the analysis of the data difficult. In this paper, we explore the use of empirical mode decomposition (EMD) based filtering technique to correct the eye blinks and eye movementartifacts in single channel EEG data. In this method, the single channel EEG data containing ocular artifact is segmented such that the artifact in each of the segment is considered as some type of slowly varying trend in the dataand the EMD is used to remove the trend. The filtering is done using partial reconstruction from components of the decomposition. The method is completely data dependent and hence adaptive and nonlinear. Experimental results are provided to check the applicability of the method on real EEG data and the results are quantified using power spectral density (PSD) as a measure. The method has given fairlygood results and does not make use of any preknowledge of artifacts or the EEG data used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inverse filters are conventionally used for resolving overlapping signals of identical waveshape. However, the inverse filtering approach is shown to be useful for resolving overlapping signals, identical or otherwise, of unknown waveshapes. Digital inverse filter design based on autocorrelation formulation of linear prediction is known to perform optimum spectral flattening of the input signal for which the filter is designed. This property of the inverse filter is used to accomplish composite signal decomposition. The theory has been presented assuming constituent signals to be responses of all-pole filters. However, the approach may be used for a general situation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parallel execution of computational mechanics codes requires efficient mesh-partitioning techniques. These mesh-partitioning techniques divide the mesh into specified number of submeshes of approximately the same size and at the same time, minimise the interface nodes of the submeshes. This paper describes a new mesh partitioning technique, employing Genetic Algorithms. The proposed algorithm operates on the deduced graph (dual or nodal graph) of the given finite element mesh rather than directly on the mesh itself. The algorithm works by first constructing a coarse graph approximation using an automatic graph coarsening method. The coarse graph is partitioned and the results are interpolated onto the original graph to initialise an optimisation of the graph partition problem. In practice, hierarchy of (usually more than two) graphs are used to obtain the final graph partition. The proposed partitioning algorithm is applied to graphs derived from unstructured finite element meshes describing practical engineering problems and also several example graphs related to finite element meshes given in the literature. The test results indicate that the proposed GA based graph partitioning algorithm generates high quality partitions and are superior to spectral and multilevel graph partitioning algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method for the explicit determination of the polar decomposition (and the related problem of finding tensor square roots) when the underlying vector space dimension n is arbitrary (but finite), is proposed. The method uses the spectral resolution, and avoids the determination of eigenvectors when the tensor is invertible. For any given dimension n, an appropriately constructed van der Monde matrix is shown to play a key role in the construction of each of the component matrices (and their inverses) in the polar decomposition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a novel numerical method based on a generalized eigenvalue decomposition for solving the diffusion equation governing the correlation diffusion of photons in turbid media. Medical imaging modalities such as diffuse correlation tomography and ultrasound-modulated optical tomography have the (elliptic) diffusion equation parameterized by a time variable as the forward model. Hitherto, for the computation of the correlation function, the diffusion equation is solved repeatedly over the time parameter. We show that the use of a certain time-independent generalized eigenfunction basis results in the decoupling of the spatial and time dependence of the correlation function, thus allowing greater computational efficiency in arriving at the forward solution. Besides presenting the mathematical analysis of the generalized eigenvalue problem on the basis of spectral theory, we put forth the numerical results that compare the proposed numerical method with the standard technique for solving the diffusion equation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present a new multiscale method which is capable of coupling atomistic and continuum domains for high frequency wave propagation analysis. The problem of non-physical wave reflection, which occurs due to the change in system description across the interface between two scales, can be satisfactorily overcome by the proposed method. We propose an efficient spectral domain decomposition of the total fine scale displacement along with a potent macroscale equation in the Laplace domain to eliminate the spurious interfacial reflection. We use Laplace transform based spectral finite element method to model the macroscale, which provides the optimum approximations for required dynamic responses of the outer atoms of the simulated microscale region very accurately. This new method shows excellent agreement between the proposed multiscale model and the full molecular dynamics (MD) results. Numerical experiments of wave propagation in a 1D harmonic lattice, a 1D lattice with Lennard-Jones potential, a 2D square Bravais lattice, and a 2D triangular lattice with microcrack demonstrate the accuracy and the robustness of the method. In addition, under certain conditions, this method can simulate complex dynamics of crystalline solids involving different spatial and/or temporal scales with sufficient accuracy and efficiency. (C) 2014 Elsevier B.V. All rights reserved.