917 resultados para Spatial data warehouse


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada como requisito parcial para a obtenção do grau de Mestre em Estatística e Gestão da Informação

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho de Projecto apresentado como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Informática

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Gestão de Informação

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RESUMO - A Segurança do Doente tem assumido uma relevância crescente nas organizações de saúde, resultado da divulgação de diversos estudos que revelaram a magnitude deste problema e simultaneamente, de uma maior pressão por parte da opinião pública e da comunicação social. Este estudo pretende desenvolver e avaliar a performance de um sistema eletrónico de deteção de eventos adversos, baseado num Data Warehouse, por comparação com os resultados obtidos pela metodologia tradicional de revisão dos registos clínicos. O objetivo principal do trabalho consistiu em identificar um conjunto de triggers / indicadores de alerta que permitam detetar potenciais eventos adversos mais comuns. O sistema desenvolvido apresentou um Valor Preditivo Positivo de 18.2%, uma sensibilidade de 65.1% e uma especificidade de 68.6%, sendo constituído por nove indicadores baseados em informação clínica e 445 códigos do ICD-9-CM, relativos a diagnósticos e procedimentos. Apesar de terem algumas limitações, os sistemas eletrónicos de deteção de eventos adversos apresentam inúmeras potencialidades, nomeadamente a utilização em tempo real e em complemento a metodologias já existentes. Considerando a importância da problemática em análise e a necessidade de aprofundar os resultados obtidos neste trabalho de projeto, seria relevante a sua extensão a um universo mais alargado de instituições hospitalares, estando a sua replicabilidade facilitada, uma vez que o Data Warehouse tem por base um conjunto de aplicações disseminadas a nível nacional. O desenvolvimento e a consolidação dos sistemas eletrónicos de deteção de eventos adversos constitui inegavelmente uma área de futuro, com reflexos ao nível da melhoria da informação existente nas organizações e que contribuirá decisivamente para a melhoria dos cuidados de saúde prestados aos doentes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado em Systems Engineering

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Informatik, Diss., 2012

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of Geographic Information Systems has revolutionalized the handling and the visualization of geo-referenced data and has underlined the critic role of spatial analysis. The usual tools for such a purpose are geostatistics which are widely used in Earth science. Geostatistics are based upon several hypothesis which are not always verified in practice. On the other hand, Artificial Neural Network (ANN) a priori can be used without special assumptions and are known to be flexible. This paper proposes to discuss the application of ANN in the case of the interpolation of a geo-referenced variable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents general problems and approaches for the spatial data analysis using machine learning algorithms. Machine learning is a very powerful approach to adaptive data analysis, modelling and visualisation. The key feature of the machine learning algorithms is that they learn from empirical data and can be used in cases when the modelled environmental phenomena are hidden, nonlinear, noisy and highly variable in space and in time. Most of the machines learning algorithms are universal and adaptive modelling tools developed to solve basic problems of learning from data: classification/pattern recognition, regression/mapping and probability density modelling. In the present report some of the widely used machine learning algorithms, namely artificial neural networks (ANN) of different architectures and Support Vector Machines (SVM), are adapted to the problems of the analysis and modelling of geo-spatial data. Machine learning algorithms have an important advantage over traditional models of spatial statistics when problems are considered in a high dimensional geo-feature spaces, when the dimension of space exceeds 5. Such features are usually generated, for example, from digital elevation models, remote sensing images, etc. An important extension of models concerns considering of real space constrains like geomorphology, networks, and other natural structures. Recent developments in semi-supervised learning can improve modelling of environmental phenomena taking into account on geo-manifolds. An important part of the study deals with the analysis of relevant variables and models' inputs. This problem is approached by using different feature selection/feature extraction nonlinear tools. To demonstrate the application of machine learning algorithms several interesting case studies are considered: digital soil mapping using SVM, automatic mapping of soil and water system pollution using ANN; natural hazards risk analysis (avalanches, landslides), assessments of renewable resources (wind fields) with SVM and ANN models, etc. The dimensionality of spaces considered varies from 2 to more than 30. Figures 1, 2, 3 demonstrate some results of the studies and their outputs. Finally, the results of environmental mapping are discussed and compared with traditional models of geostatistics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is to establish a relationship between schistosomiasis prevalence and social-environmental variables, in the state of Minas Gerais, Brazil, through multiple linear regression. The final regression model was established, after a variables selection phase, with a set of spatial variables which contains the summer minimum temperature, human development index, and vegetation type variables. Based on this model, a schistosomiasis risk map was built for Minas Gerais.