916 resultados para Solitons monopoles and instantons
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We consider modifications of the nonlinear Schrodinger model (NLS) to look at the recently introduced concept of quasi-integrability. We show that such models possess an in finite number of quasi-conserved charges which present intriguing properties in relation to very specific space-time parity transformations. For the case of two-soliton solutions where the fields are eigenstates of this parity, those charges are asymptotically conserved in the scattering process of the solitons. Even though the charges vary in time their values in the far past and the far future are the same. Such results are obtained through analytical and numerical methods, and employ adaptations of algebraic techniques used in integrable field theories. Our findings may have important consequences on the applications of these models in several areas of non-linear science. We make a detailed numerical study of the modified NLS potential of the form V similar to (vertical bar psi vertical bar(2))(2+epsilon), with epsilon being a perturbation parameter. We perform numerical simulations of the scattering of solitons for this model and find a good agreement with the results predicted by the analytical considerations. Our paper shows that the quasi-integrability concepts recently proposed in the context of modifications of the sine-Gordon model remain valid for perturbations of the NLS model.
Resumo:
We propose a new Skyrme-like model with fields taking values on the sphere S3 or, equivalently, on the group SU(2). The action of the model contains a quadratic kinetic term plus a quartic term which is the same as that of the Skyrme-Faddeev model. The novelty of the model is that it possess a first order Bogomolny type equation whose solutions automatically satisfy the second order Euler-Lagrange equations. It also possesses a lower bound on the static energy which is saturated by the Bogomolny solutions. Such Bogomolny equation is equivalent to the so-called force free equation used in plasma and solar Physics, and which possesses large classes of solutions. An old result due to Chandrasekhar prevents the existence of finite energy solutions for the force free equation on the entire three- dimensional space R3. We construct new exact finite energy solutions to the Bogomolny equations for the case where the space is the three-sphere S3, using toroidal like coordinates.
Resumo:
Generalized Bose operators correspond to reducible representations of the harmonic oscillator algebra. We demonstrate their relevance in the construction of topologically non-trivial solutions in noncommutative gauge theories, focusing our attention to flux tubes, vortices, and instantons. Our method provides a simple new relation between the topological charge and the number of times the basic irreducible representation occurs in the reducible representation underlying the generalized Bose operator. When used in conjunction with the noncommutative ADHM construction, we find that these new instantons are in general not unitarily equivalent to the ones currently known in literature.
Resumo:
Ensembles of charged particles (plasmas) are a highly complex form of matter, most often modeled as a many-body system characterized by weak inter-particle interactions (electrostatic coupling). However, strongly-coupled plasma configurations have recently been produced in laboratory, either by creating ultra-cold plasmas confined in a trap or by manipulating dusty plasmas in discharge experiments. In this paper, the nonlinear aspects involved in the motion of charged dust grains in a one-dimensional plasma monolayer (crystal) are discussed. Different types of collective excitations are reviewed, and characteristics and conditions for their occurrence in dusty plasma crystals are discussed, in a quasi-continuum approximation. Dust crystals are shown to support nonlinear kink-shaped supersonic solitary longitudinal excitations, as well as modulated envelope localized modes associated with longitudinal and transverse vibrations. Furthermore, the possibility for intrinsic localized modes (ILMs) — Discrete Breathers (DBs) — to occur is investigated, from first principles. The effect of mode-coupling is also briefly considered. The relation to previous results on atomic chains, and also to experimental results on strongly-coupled dust layers in gas discharge plasmas, is briefly discussed.
Resumo:
We consider the Hamiltonian reduction of the two-loop Wess-Zumino-Novikov-Witten model (WZNW) based on an untwisted affine Kac-Moody algebra script Ĝ. The resulting reduced models, called Generalized Non-Abelian Conformal Affine Toda (G-CAT), are conformally invariant and a wide class of them possesses soliton solutions; these models constitute non-Abelian generalizations of the conformal affine Toda models. Their general solution is constructed by the Leznov-Saveliev method. Moreover, the dressing transformations leading to the solutions in the orbit of the vacuum are considered in detail, as well as the τ-functions, which are defined for any integrable highest weight representation of script Ĝ, irrespectively of its particular realization. When the conformal symmetry is spontaneously broken, the G-CAT model becomes a generalized affine Toda model, whose soliton solutions are constructed. Their masses are obtained exploring the spontaneous breakdown of the conformal symmetry, and their relation to the fundamental particle masses is discussed. We also introduce what we call the two-loop Virasoro algebra, describing extended symmetries of the two-loop WZNW models.
Resumo:
This thesis presents theoretical investigation of three topics concerned with nonlinear optical pulse propagation in optical fibres. The techniques used are mathematical analysis and numerical modelling. Firstly, dispersion-managed (DM) solitons in fibre lines employing a weak dispersion map are analysed by means of a perturbation approach. In the case of small dispersion map strengths the average pulse dynamics is described by a perturbation approach (NLS) equation. Applying a perturbation theory, based on the Inverse Scattering Transform method, an analytic expression for the envelope of the DM soliton is derived. This expression correctly predicts the power enhancement arising from the dispersion management.Secondly, autosoliton transmission in DM fibre systems with periodical in-line deployment of nonlinear optical loop mirrors (NOLMs) is investigated. The use of in-line NOLMs is addressed as a general technique for all-optical passive 2R regeneration of return-to-zero data in high speed transmission system with strong dispersion management. By system optimisation, the feasibility of ultra-long single-channel and wavelength-division multiplexed data transmission at bit-rates ³ 40 Gbit s-1 in standard fibre-based systems is demonstrated. The tolerance limits of the results are defined.Thirdly, solutions of the NLS equation with gain and normal dispersion, that describes optical pulse propagation in an amplifying medium, are examined. A self-similar parabolic solution in the energy-containing core of the pulse is matched through Painlevé functions to the linear low-amplitude tails. The analysis provides a full description of the features of high-power pulses generated in an amplifying medium.
Resumo:
We investigate a class of simple models for Langevin dynamics of turbulent flows, including the one-layer quasi-geostrophic equation and the two-dimensional Euler equations. Starting from a path integral representation of the transition probability, we compute the most probable fluctuation paths from one attractor to any state within its basin of attraction. We prove that such fluctuation paths are the time reversed trajectories of the relaxation paths for a corresponding dual dynamics, which are also within the framework of quasi-geostrophic Langevin dynamics. Cases with or without detailed balance are studied. We discuss a specific example for which the stationary measure displays either a second order (continuous) or a first order (discontinuous) phase transition and a tricritical point. In situations where a first order phase transition is observed, the dynamics are bistable. Then, the transition paths between two coexisting attractors are instantons (fluctuation paths from an attractor to a saddle), which are related to the relaxation paths of the corresponding dual dynamics. For this example, we show how one can analytically determine the instantons and compute the transition probabilities for rare transitions between two attractors.
Resumo:
We consider SU(3)-equivariant dimensional reduction of Yang Mills theory over certain cyclic orbifolds of the 5-sphere which are Sasaki-Einstein manifolds. We obtain new quiver gauge theories extending those induced via reduction over the leaf spaces of the characteristic foliation of the Sasaki-Einstein structure, which are projective planes. We describe the Higgs branches of these quiver gauge theories as moduli spaces of spherically symmetric instantons which are SU(3)-equivariant solutions to the Hermitian Yang-Mills equations on the associated Calabi-Yau cones, and further compare them to moduli spaces of translationally-invariant instantons on the cones. We provide an explicit unified construction of these moduli spaces as Kahler quotients and show that they have the same cyclic orbifold singularities as the cones over the lens 5-spaces. (C) 2015 The Authors. Published by Elsevier B.V.
Resumo:
Two new families of T-dual integrable models of dyonic type are constructed. They represent specific A(n)((1)) singular non-abelian affine Toda models having U(1) global symmetry. Their I-soliton spectrum contains both neutral and U(I)-charged topological solitons sharing the main properties of 4-dimensional Yang-Mills-Higgs monopoles and dyons. The semiclassical quantization of these solutions as well as the exact counterterms and the coupling constant renormalization are studied. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Despite the fact that the integral form of the equations of classical electrodynamics is well known, the same is not true for non-Abelian gauge theories. The aim of the present paper is threefold. First, we present the integral form of the classical Yang-Mills equations in the presence of sources and then use it to solve the long-standing problem of constructing conserved charges, for any field configuration, which are invariant under general gauge transformations and not only under transformations that go to a constant at spatial infinity. The construction is based on concepts in loop spaces and on a generalization of the non-Abelian Stokes theorem for two-form connections. The third goal of the paper is to present the integral form of the self-dual Yang-Mills equations and calculate the conserved charges associated with them. The charges are explicitly evaluated for the cases of monopoles, dyons, instantons and merons, and we show that in many cases those charges must be quantized. Our results are important in the understanding of global properties of non-Abelian gauge theories.
Resumo:
Monopoles which are sources of non-Abelian magnetic flux are predicted by many models of grand unification. It has been argued elsewhere that a generic transformation of the "unbroken" symmetry group H cannot be globally implemented on such monopoles for reasons of topology. In this paper, we show that similar topological obstructions are encountered in the mechanics of a test particle in the field of these monopoles and that the transformations of H cannot all be globally implemented as canonical transformations. For the SU(5) model, if H is SU(3)C×U(1)em, a consequence is that color multiplets are not globally defined, while if H is SU(3)C×SU(2)WS×U(1)Y, the same is the case for both color and electroweak multiplets. There are, however, several subgroups KT, KT′,… of H which can be globally implemented, with the transformation laws of the observables differing from group to group in a novel way. For H=SU(3)C×U(1)em, a choice for KT is SU(2)C×U(1)em, while for H=SU(3)C×SU(2)WS×U(1)Y, a choice is SU(2)C×U(1)×U(1)×U(1). The paper also develops the differential geometry of monopoles in a form convenient for computations.
Resumo:
The concept of short range strong spin-two (f) field (mediated by massive f-mesons) and interacting directly with hadrons was introduced along with the infinite range (g) field in early seventies. In the present review of this growing area (often referred to as strong gravity) we give a general relativistic treatment in terms of Einstein-type (non-abelian gauge) field equations with a coupling constant Gf reverse similar, equals 1038 GN (GN being the Newtonian constant) and a cosmological term λf ƒ;μν (ƒ;μν is strong gravity metric and λf not, vert, similar 1028 cm− is related to the f-meson mass). The solutions of field equations linearized over de Sitter (uniformly curves) background are capable of having connections with internal symmetries of hadrons and yielding mass formulae of SU(3) or SU(6) type. The hadrons emerge as de Sitter “microuniverses” intensely curved within (radius of curvature not, vert, similar10−14 cm).The study of spinor fields in the context of strong gravity has led to Heisenberg's non-linear spinor equation with a fundamental length not, vert, similar2 × 10−14 cm. Furthermore, one finds repulsive spin-spin interaction when two identical spin-Image particles are in parallel configuration and a connection between weak interaction and strong gravity.Various other consequences of strong gravity embrace black hole (solitonic) solutions representing hadronic bags with possible quark confinement, Regge-like relations between spins and masses, connection with monopoles and dyons, quantum geons and friedmons, hadronic temperature, prevention of gravitational singularities, providing a physical basis for Dirac's two metric and large numbers hypothesis and projected unification with other basic interactions through extended supergravity.
Resumo:
In 1931 Dirac studied the motion of an electron in the field of a magnetic monopole and found that the quantization of electric charge can be explained by postulating the mere existence of a magnetic monopole. Since 1974 there has been a resurgence of interest in magnetic monopole due to the work of ‘t’ Hooft and Polyakov who independently observed that monopoles can exist as finite energy topologically stable solutions to certain spontaneously broken gauge theories. The thesis, “Studies on Magnetic Monopole Solutions of Non-abelian Gauge Theories and Related Problems”, reports a systematic investigation of classical solutions of non-abelian gauge theories with special emphasis on magnetic monopoles and dyons which possess both electric and magnetic charges. The formation of bound states of a dyon with fermions and bosons is also studied in detail. The thesis opens with an account of a new derivation of a relationship between the magnetic charge of a dyon and the topology of the gauge fields associated with it. Although this formula has been reported earlier in the literature, the present method has two distinct advantages. In the first place, it does not depend either on the mechanism of symmetry breaking or on the nature of the residual symmetry group. Secondly, the results can be generalized to finite temperature monopoles.