895 resultados para Solar Array, Shade, Power Output


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The power output achieved at peak oxygen consumption (VO2 peak) and the time this power can be maintained (i.e., Tmax) have been used in prescribing high-intensity interval training. In this context, the present study examined temporal aspects of the VO2 response to exercise at the cycling power that output well trained cyclists achieve their VO2 peak (i.e., Pmax). Following a progressive exercise test to determine VO2 peak, 43 well trained male cyclists (M age = 25 years, SD = 6; M mass = 75 kg SD = 7; M VO2 peak = 64.8 ml(.)kg(1.)min(-1), SD = 5.2) performed two Tmax tests 1 week apart.1. Values expressed for each participant are means and standard deviations of these two tests. Participants achieved a mean VO2 peak during the Tmax test after 176 s (SD = 40; = 74% of Tmax, SD = 12) and maintained it for 66 s (SD = 39; M = 26% of Tmax, SD = 12). Additionally they obtained mean 95 % of VO2 peak after 147 s (SD = 31; M = 62 % of Tmax, SD = 8) and maintained it for 95 s (SD = 38; M = 38 % of Tmax, SD = 8). These results suggest that 60-70% of Tmax is an appropriate exercise duration for a population of well trained cyclists to attain VO2 peak during exercise at Pmax. However due to intraparticipant variability in the temporal aspects of the VO2 response to exercise at Pmax, future research is needed to examine whether individual high-intensity interval training programs for well trained endurance athletes might best be prescribed according to an athlete's individual VO2 response to exercise at Pmax.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a surrogate-model-based optimization of a doubly-fed induction generator (DFIG) machine winding design for maximizing power yield. Based on site-specific wind profile data and the machine's previous operational performance, the DFIG's stator and rotor windings are optimized to match the maximum efficiency with operating conditions for rewinding purposes. The particle swarm optimization-based surrogate optimization techniques are used in conjunction with the finite element method to optimize the machine design utilizing the limited available information for the site-specific wind profile and generator operating conditions. A response surface method in the surrogate model is developed to formulate the design objectives and constraints. Besides, the machine tests and efficiency calculations follow IEEE standard 112-B. Numerical and experimental results validate the effectiveness of the proposed technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solar thermal power plants are usually installed in locations with high yearly average solar radiation, often deserts. In such conditions, cooling water required for thermodynamic cycles is rarely available. Moreover, when solar radiation is high, ambient temperature is very high as well; this leads to excessive condensation temperature, especially when air-condensers are used, and decreases the plant efficiency. However, temperature variation in deserts is often very high, which drives to relatively low temperatures during the night. This fact can be exploited with the use of a closed cooling system, so that the coolant (water) is chilled during the night and store. Chilled water is then used during peak temperature hours to cool the condenser (dry cooling), thus enhancing power output and efficiency. The present work analyzes the performance improvement achieved by night thermal cool storage, compared to its equivalent air cooled power plant. Dry cooling is proved to be energy-effective for moderately high day–night temperature differences (20 °C), often found in desert locations. The storage volume requirement for different power plant efficiencies has also been studied, resulting on an asymptotic tendency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The supercritical Rankine power cycle offers a net improvement in plant efficiency compared with a subcritical Rankine cycle. For fossil power plants the minimum supercritical steam turbine size is about 450MW. A recent study between Sandia National Laboratories and Siemens Energy, Inc., published on March 2013, confirmed the feasibility of adapting the Siemens turbine SST-900 for supercritical steam in concentrated solar power plants, with a live steam conditions 230-260 bar and output range between 140-200 MWe. In this context, this analysis is focused on integrating a line-focus solar field with a supercritical Rankine power cycle. For this purpose two heat transfer fluids were assessed: direct steam generation and molten salt Hitec XL. To isolate solar field from high pressure supercritical water power cycle, an intermediate heat exchanger was installed between linear solar collectors and balance of plant. Due to receiver selective coating temperature limitations, turbine inlet temperature was fixed 550ºC. The design-point conditions were 550ºC and 260 bar at turbine inlet, and 165 MWe Gross power output. Plant performance was assessed at design-point in the supercritical power plant (between 43-45% net plant efficiency depending on balance of plantconfiguration), and in the subcritical plant configuration (~40% net plant efficiency). Regarding the balance of plant configuration, direct reheating was adopted as the optimum solution to avoid any intermediate heat exchanger. One direct reheating stage between high pressure turbine and intermediate pressure turbine is the common practice; however, General Electric ultrasupercritical(350 bar) fossil power plants also considered doubled-reheat applications. In this study were analyzed heat balances with single-reheat, double-reheat and even three reheating stages. In all cases were adopted the proper reheating solar field configurations to limit solar collectors pressure drops. As main conclusion, it was confirmed net plant efficiency improvements in supercritical Rankine line-focus (parabolic or linear Fresnel) solar plant configurations are mainly due to the following two reasons: higher number of feed-water preheaters (up to seven)delivering hotter water at solar field inlet, and two or even three direct reheating stages (550ºC reheating temperature) in high or intermediate pressure turbines. However, the turbine manufacturer should confirm the equipment constrains regarding reheating stages and number of steam extractions to feed-water heaters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose Concentrating Solar Power (CSP) plants based on parabolic troughs utilize auxiliary fuels (usually natural gas) to facilitate start-up operations, avoid freezing of HTF and increase power output. This practice has a significant effect on the environmental performance of the technology. The aim of this paper is to quantify the sustainability of CSP and to analyse how this is affected by hybridisation with different natural gas (NG) inputs. Methods A complete Life Cycle (LC) inventory was gathered for a commercial wet-cooled 50 MWe CSP plant based on parabolic troughs. A sensitivity analysis was conducted to evaluate the environmental performance of the plant operating with different NG inputs (between 0 and 35% of gross electricity generation). ReCiPe Europe (H) was used as LCA methodology. CML 2 baseline 2000 World and ReCiPe Europe E were used for comparative purposes. Cumulative Energy Demands (CED) and Energy Payback Times (EPT) were also determined for each scenario. Results and discussion Operation of CSP using solar energy only produced the following environmental profile: climate change 26.6 kg CO2 eq/KWh, human toxicity 13.1 kg 1,4-DB eq/KWh, marine ecotoxicity 276 g 1,4-DB eq/KWh, natural land transformation 0.005 m2/KWh, eutrophication 10.1 g P eq/KWh, acidification 166 g SO2 eq/KWh. Most of these impacts are associated with extraction of raw materials and manufacturing of plant components. The utilization NG transformed the environmental profile of the technology, placing increasing weight on impacts related to its operation and maintenance. Significantly higher impacts were observed on categories like climate change (311 kg CO2 eq/MWh when using 35 % NG), natural land transformation, terrestrial acidification and fossil depletion. Despite its fossil nature, the use of NG had a beneficial effect on other impact categories (human and marine toxicity, freshwater eutrophication and natural land transformation) due to the higher electricity output achieved. The overall environmental performance of CSP significantly deteriorated with the use of NG (single score 3.52 pt in solar only operation compared to 36.1 pt when using 35 % NG). Other sustainability parameters like EPT and CED also increased substantially as a result of higher NG inputs. Quasilinear second-degree polynomial relationships were calculated between various environmental performance parameters and NG contributions. Conclusions Energy input from auxiliary NG determines the environmental profile of the CSP plant. Aggregated analysis shows a deleterious effect on the overall environmental performance of the technology as a result of NG utilization. This is due primarily to higher impacts on environmental categories like climate change, natural land transformation, fossil fuel depletion and terrestrial acidification. NG may be used in a more sustainable and cost-effective manner in combined cycle power plants, which achieve higher energy conversion efficiencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the power management issues in a mobile solar energy storage system. A multi-converter based energy storage system is proposed, in which solar power is the primary source while the grid or the diesel generator is selected as the secondary source. The existence of the secondary source facilitates the battery state of charge detection by providing a constant battery charging current. Converter modeling, multi-converter control system design, digital implementation and experimental verification are introduced and discussed in details. The prototype experiment indicates that the converter system can provide a constant charging current during solar converter maximum power tracking operation, especially during large solar power output variation, which proves the feasibility of the proposed design. © 2014 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the report for the unit “Métodos Interactivos de Participação e Decisão A” (Interactive methods of participation and decision A), coordinated by Prof. Lia Maldonado Teles de Vasconcelos and Prof. Nuno Miguel Ribeiro Videira Costa. This unit was provided for the PhD Program in Technology Assessment in 2015/2016.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solar photovoltaic systems are an increasing option for electricity production, since they produce electrical energy from a clean renewable energy resource, and over the years, as a result of the research, their efficiency has been increasing. For the interface between the dc photovoltaic solar array and the ac electrical grid is necessary the use of an inverter (dc-ac converter), which should be optimized to extract the maximum power from the photovoltaic solar array. In this paper is presented a solution based on a current-source inverter (CSI) using continuous control set model predictive control (CCS-MPC). All the power circuits and respective control systems are described in detail along the paper and were tested and validated performing computer simulations. The paper shows the simulation results and are drawn several conclusions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a critical and quantitative analysis of the influence of the Power Quality in grid connected solar photovoltaic microgeneration installations. First are introduced the main regulations and legislation related with the solar photovoltaic microgeneration, in Portugal and Europe. Next are presented Power Quality monitoring results obtained from two residential solar photovoltaic installations located in the north of Portugal, and is explained how the Power Quality events affect the operation of these installations. Afterwards, it is described a methodology to estimate the energy production losses and the impact in the revenue caused by the abnormal operation of the electrical installation. This is done by comparing the amount of energy that was injected into the power grid with the theoretical value of energy that could be injected in normal conditions. The performed analysis shows that Power Quality severally affects the solar photovoltaic installations operation. The losses of revenue in the two monitored installations M1 and M2 are estimated in about 27% and 22%, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently, many drivers experience some difficulty in viewing the road ahead of them during times of reduced visibility, such as rain, snow, fog, or the darkness of night- Recent studies done by the National Safety Council provide a detailed contrast between fatal accidents occurring during the day and night. Revealed was that the motor vehicle night death rate (4.41 deaths per 100 million miles driven) was sharply higher than the corresponding death rate during daylight hours (1.21). By providing a delineating system powered by the natural resource of solar power, a constant source of visibility may be maintained throughout the evening. Along with providing enough light to trace the outline of the road, other major goals defined in producing this delineator system are as follows: 1. A strong and durable design that would protect the internal components and survive extreme weather conditions. 2. A low maintenance system where components need few repairs or replacements. 3. A design which makes all components accessible in the event that maintenance is needed, but also prevents vandalism. 4. A design that provides greater visibility to drivers and will not harm a vehicle or its passengers in the event of a collision. This solar powered highway delineator consists of an adjustable solar array, a light fixture, and a standard delineator pole. The solar array houses and protects the solar panels, and can be easily adjusted to obtain a maximum amount of sunlight. The light fixture primarily houses the battery, the circuit and the light assembly. Both components allow for easy accessibility and reduce vandalism using internal connections for bolts and wires. The delineator mounting pole is designed to extensively deform in the event of a collision, therefore reducing any harm caused to the vehicle and/or the passengers. The cost of a single prototype to be produced is approximately $70.00 excluding labor costs. However, these material and labor costs will be greatly reduced if a large number of delineators are produced. It is recommended that the Iowa Department of Transportation take full advantage of the research and development put into this delineator design. The principles used in creating this delineator can be used to provide an outline for drivers to follow, or on a larger scale, provide actual roadway lighting in areas where it was never before possible or economically feasible. In either event, the number of fatal accidents will be decreased due to the improved driver visibility in the evening.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solar electromagnetic radiation powers Earth’s climate system and, consequently, it is often naively assumed that changes in this solar output must be responsible for changes in Earth’s climate. However, the Sun is close to a blackbody radiator and so emits according to its surface temperature and the huge thermal time constant of the outer part of the Sun limits the variability in surface temperature and hence output. As a result, on all timescales of interest, changes in total power output are limited to small changes in effective surface temperature (associated with magnetic fields) and potential, although as yet undetected, solar radius variations. Larger variations are seen in the UV part of the spectrum which is emitted from the lower solar atmosphere (the chromosphere) and which influences Earth’s stratosphere. There is interest in“top-down” mechanisms whereby solar UV irradiance modulates stratospheric temperatures and winds which, in turn, may influence the underlying troposphere where Earth’s climate and weather reside. This contrasts with “bottom-up” effects in which the small total solar irradiance (dominated by the visible and near-IR) variations cause surface temperature changes which drive atmospheric circulations. In addition to these electromagnetic outputs, the Sun modulates energetic particle fluxes incident on the Earth. Solar Energetic Particles (SEP) are emitted by solar flares and from the shock fronts ahead of supersonic (and super-Alfvenic) ejections of material from the solar atmosphere. These SEPs enhance the destruction of polar stratospheric ozone which could be an additional form of top-down climate forcing. Even more energetic are Galactic Cosmic Rays (GCRs). These particles are not generated by the Sun, rather they originate at the shock fronts emanating from violent galactic events such as supernovae explosions; however, the expansion of the solar magnetic field into interplanetary space means that the Sun modulates the number of GCRs reaching Earth. These play a key role in enabling Earth’s global electric (thunderstorm) circuit and it has been proposed that they also modulate the formation of clouds. Both electromagnetic and corpuscular solar effects are known to vary over the solar magnetic cycle which is typically between 10 and 14 yrs in length (with an average close to 11 yrs). The solar magnetic field polarity at any one phase of one of these activity cycles is opposite to that at the same phase of the next cycle and this influences some phenomena, for example GCRs, which therefore show a 22 yr (“Hale”) cycle on average. Other phenomena, such as irradiance modulation, do not depend on the polarity of the magnetic field and so show only the basic 11-yr activity cycle. However, any effects on climate are much more significant for solar drifts over centennial timescales. This chapter discusses and evaluates potential effects on Earth’s climate system of variations in these solar inputs. Because of the great variety of proposed mechanisms, the wide range of timescales studied (from days to millennia) and the many debates (often triggered by the application of inadequate statistical methods), the literature on this subject is vast, complex, divergent and rapidly changing: consequently the number of references cited in this review is very large (yet still only a small fraction of the total).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents the stage integration in power electronics converters as a suitable solution for solar photovoltaic inverters. The rated voltages available in Photovoltaic (PV) modules have usually low values for applications such as regulated output voltages in stand-alone or grid-connected configurations. In these cases, a boost stage or a transformer will be necessary. Transformers have low efficiencies, heavy weights and have been used only when galvanic isolation is mandatory. Furthermore, high-frequency transformers increase the converter complexity. Therefore, the most usual topologies use a boost stage and one inverter stage cascaded. However, the complexity, size, weight, cost and lifetime might be improved considering the integration of both stages. These are the expected features to turn attractive this kind of integrated structures. Therefore, some integrated converters are analyzed and compared in this paper in order to support future evaluations and trends for low power single-phase inverters for PV systems. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents evaluations among the most usual MPPT techniques, doing meaningful comparisons with respect to the amount of energy extracted from the photovoltaic panel (PV) (Tracking Factor - TF) in relation to the available power, PV voltage ripple, dynamic response and use of sensors. Using MatLab/Simulink® and DSpace platforms, a digitally controlled boost DC-DC converter was implemented and connected to an Agilent Solar Array E4350B simulator in order to verify the analytical procedures. The main experimental results are presented and a contribution in the implementation of the IC algorithm is performed and called IC based on PI. Moreover, the dynamic response and the tracking factor are also evaluated using a Friendly User Interface, which is capable of online program power curves and compute the TF. Finally, a typical daily insulation is used in order to verify the experimental results for the main PV MPPT methods. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Earth receives annually 1,5.1018 kWh of solar energy, which corresponds to 1000 times the world energy consumption in this period. This fact comes out that, besides being responsible for the maintenance of life on Earth, the solar radiation is in an inexhaustible energy source, with an enormous potential for use by systems capture and conversion into another form of energy. In many applications of low power systems that convert light directly into electricity, called photovoltaic advantageously replace other means of production processes, where its distribution is very significant. The determination of the power generated by such a system is of paramount importance for the design energy of its implementation and evaluation of the system itself. This study aims to determine a relationship between the maximum power generated by solar photovoltaic and characteristic parameters of the generator. This relationship allows to evaluate the performance of such a system. For simulations of the developed equations were used 3 photovoltaic modules with an output of 100 Wp each, and data collection was performed during one year by enrolling in addition to meteorological data, solar irradiance incident on the modules.