983 resultados para Software radio architecture
Resumo:
Esta dissertação tem como principal objectivo, propor um sistema de comunicações para as Ilhas Desertas que vise atender às necessidades expostas pelo PNM - Parque Natural da Madeira. Localizadas a 22 milhas marítimas do Funchal, as ilhas Desertas não dispõem de cobertura da rede móvel GSM - Global Standard for Mobile, nem de qualquer outra infra-estrutura de comunicações que permita a comunicação entre os vigilantes e a estação de serviço - doca. Esta falta de comunicação torna-se mais problemática aquando da realização de acções de fiscalização e vigilância, já que em caso de acidente não será possível pedir auxílio. Dada esta realidade propomos a criação de uma rede de rádio móvel terrestre para as Ilhas Desertas, com a instalação de vários repetidores UHF no topo das ilhas. O projecto desta rede será fundamentado com a realização de um estudo de cobertura para as três ilhas que incluirá a avaliação e análise de vários modelos de propagação. Esta análise é realizada com recurso a duas ferramentas de software, Radio-Mobile e DifractionLoss, tendo este último sido desenvolvido no âmbito desta dissertação. De forma a melhorar a cobertura da rede GSM na estação de serviço do PNM na Deserta Grande, sugerem-se duas soluções: a primeira consiste na instalação de um repetidor GSM de frequência deslocada e a segunda na instalação de uma NanoBTS. Além da falta de comunicação na área das ilhas Desertas, a falta de comunicação com a ilha da Madeira é também uma realidade. Perante esta situação sugere-se a criação de uma ligação por feixes hertzianos de alta frequência entre a estação de serviço do PNM na Deserta Grande e a sede do PNM, localizada na zona do Jardim Botânico na Ilha da Madeira. O projecto desta ligação apresenta um planeamento e dimensionamento de acordo com as necessidades apresentadas pelo PNM, assim como um estudo de propagação baseado num procedimento teórico e em simulações de software. É também proposto um sistema de videovigilância controlado remotamente com o objectivo de permitir a monitorização remota dos lobos-marinhos.
Resumo:
Aspect-Oriented Software Development (AOSD) is a technique that complements the Object- Oriented Software Development (OOSD) modularizing several concepts that OOSD approaches do not modularize appropriately. However, the current state-of-the art on AOSD suffers with software evolution, mainly because aspect definition can stop to work correctly when base elements evolve. A promising approach to deal with that problem is the definition of model-based pointcuts, where pointcuts are defined based on a conceptual model. That strategy makes pointcut less prone to software evolution than model-base elements. Based on that strategy, this work defines a conceptual model at high abstraction level where we can specify software patterns and architectures that through Model Driven Development techniques they can be instantiated and composed in architecture description language that allows aspect modeling at architecture level. Our MDD approach allows propagate concepts in architecture level to another abstraction levels (design level, for example) through MDA transformation rules. Also, this work shows a plug-in implemented to Eclipse platform called AOADLwithCM. That plug-in was created to support our development process. The AOADLwithCM plug-in was used to describe a case study based on MobileMedia System. MobileMedia case study shows step-by-step how the Conceptual Model approach could minimize Pointcut Fragile Problems, due to software evolution. MobileMedia case study was used as input to analyses evolutions on software according to software metrics proposed by KHATCHADOURIAN, GREENWOOD and RASHID. Also, we analyze how evolution in base model could affect maintenance on aspectual model with and without Conceptual Model approaches
Resumo:
This study deals with indoor positioning using GSM radio, which has the distinct advantage of wide coverage over other wireless technologies. In particular, we focus on passive localization systems that are able to achieve high localization accuracy without any prior knowledge of the indoor environment or the tracking device radio settings. In order to overcome these challenges, newly proposed localization algorithms based on the exploitation of the received signal strength (RSS) are proposed. We explore the effects of non-line-of-sight communication links, opening and closing of doors, and human mobility on RSS measurements and localization accuracy. We have implemented the proposed algorithms on top of software defined radio systems and carried out detailed empirical indoor experiments. The performance results show that the proposed solutions are accurate with average localization errors between 2.4 and 3.2 meters.
Resumo:
Cada vez es más frecuente que los sistemas de comunicaciones realicen buena parte de sus funciones (modulación y demodulación, codificación y decodificación...) mediante software en lugar de utilizar hardware dedicado. Esta técnica se denomina “Radio software”. El objetivo de este PFC es estudiar un algoritmo implementado en C empleado en sistemas de comunicaciones modernos, en concreto la decodificación de Viterbi, el cual se encarga de corregir los posibles errores producidos a lo largo de la comunicación, para poder trasladarlo a sistemas empotrados multiprocesador. Partiendo de un código en C para el decodificador que realiza todas sus operaciones en serie, en este Proyecto fin de carrera se ha paralelizado dicho código, es decir, que el trabajo que realizaba un solo hilo para el caso del código serie, es procesado por un número de hilos configurables por el usuario, persiguiendo que el tiempo de ejecución se reduzca, es decir, que el programa paralelizado se ejecute de una manera más rápida. El trabajo se ha realizado en un PC con sistema operativo Linux, pero la versión paralelizada del código puede ser empleada en un sistema empotrado multiprocesador en el cual cada procesador ejecuta el código correspondiente a uno de los hilos de la versión de PC. ABSTRACT It is increasingly common for communications systems to perform most of its functions (modulation and demodulation, coding and decoding) by software instead of than using dedicated hardware. This technique is called: “Software Radio”. The aim of the PFC is to study an implemented algorithm in C language used in modern communications systems, particularly Viterbi decoding, which amends any possible error produced during the communication, in order to be able to move multiprocessor embedded systems. Starting from a C code of the decoder that performs every single operation in serial, in this final project, this code has been parallelized, which means that the work used to be done by just a single thread in the case of serial code, is processed by a number of threads configured by the user, in order to decrease the execution time, meaning that the parallelized program is executed faster. The work has been carried out on a PC using Linux operating system, but the parallelized version of the code could also be used in an embedded multiprocessor system in which each processor executes the corresponding code to every single one of the threads of the PC version.
Resumo:
Este Proyecto Fin de Grado tiene como objetivo fundamental el perfeccionamiento y puesta en explotación de un sistema de ayuda a la decisión que evalúa el desarrollo del lenguaje en niños de 0 a 6 años de edad. Este sistema está formado fundamentalmente por una aplicación diseñada y construida mediante una arquitectura de componentes de software modular y reutilizable. La aplicación será usada por los pediatras para realizar evaluaciones del desarrollo del lenguaje infantil y además por los neuropediatras, logopedas y miembros de equipos de Atención Temprana para consultar las evaluaciones y validar las decisiones propuestas por el sistema. El sistema es accesible vía web y almacena toda la información que maneja en una base de datos. Asimismo, el sistema se apoya en un modelo conceptual u ontología desarrollado previamente para inferir las decisiones adecuadas para las evaluaciones del lenguaje. El sistema incorpora las funciones de gestión de los usuarios del mismo. ABSTRACT This Grade End Project has as fundamental objective the improvement and deployment of a decision support system for evaluating children language development from 0 to 6 years of age. This system is mainly formed by an application designed and built using a modular and reusable software component architecture. The application will be used by pediatricians for evaluating children´s speech development and also by neuro-pediatricians, speech therapists and early childhood intervention team members, for consulting previous evaluations and for validating system´s proposed decision. The system is web based and stores its information in a database. Likewise, the system is supported by a conceptual model or ontology previously developed to infer the appropriate decision for language evaluation. The system also includes user management functions.
Resumo:
This Thesis main objective is to implement a supporting architecture to Autonomic Hardware systems, capable of manage the hardware running in reconfigurable devices. The proposed architecture implements manipulation, generation and communication functionalities, using the Context Oriented Active Repository approach. The solution consists in a Hardware-Software based architecture called "Autonomic Hardware Manager (AHM)" that contains an Active Repository of Hardware Components. Using the repository the architecture will be able to manage the connected systems at run time allowing the implementation of autonomic features such as self-management, self-optimization, self-description and self-configuration. The proposed architecture also contains a meta-model that allows the representation of the Operating Context for hardware systems. This meta-model will be used as basis to the context sensing modules, that are needed in the Active Repository architecture. In order to demonstrate the proposed architecture functionalities, experiments were proposed and implemented in order to proof the Thesis hypothesis and achieved objectives. Three experiments were planned and implemented: the Hardware Reconfigurable Filter, that consists of an application that implements Digital Filters using reconfigurable hardware; the Autonomic Image Segmentation Filter, that shows the project and implementation of an image processing autonomic application; finally, the Autonomic Autopilot application that consist of an auto pilot to unmanned aerial vehicles. In this work, the applications architectures were organized in modules, according their functionalities. Some modules were implemented using HDL and synthesized in hardware. Other modules were implemented kept in software. After that, applications were integrated to the AHM to allow their adaptation to different Operating Context, making them autonomic.
Resumo:
El presente trabajo empleó herramientas de hardware y software de licencia libre para el establecimiento de una estación base celular (BTS) de bajo costo y fácil implementación. Partiendo de conceptos técnicos que facilitan la instalación del sistema OpenBTS y empleando el hardware USRP N210 (Universal Software Radio Peripheral) permitieron desplegar una red análoga al estándar de telefonía móvil (GSM). Usando los teléfonos móviles como extensiones SIP (Session Initiation Protocol) desde Asterisk, logrando ejecutar llamadas entre los terminales, mensajes de texto (SMS), llamadas desde un terminal OpenBTS hacia otra operadora móvil, entre otros servicios.
Resumo:
This paper explores the role of information and communication technologies in managing risk and early discharge patients, and suggests innovative actions in the area of E-Health services. Treatments of chronic illnesses, or treatments of special needs such as cardiovascular diseases, are conducted in long-stay hospitals, and in some cases, in the homes of patients with a follow-up from primary care centre. The evolution of this model is following a clear trend: trying to reduce the time and the number of visits by patients to health centres and derive tasks, so far as possible, toward outpatient care. Also the number of Early Discharge Patients (EDP) is growing, thus permiting a saving in the resources of the care center. The adequacy of agent and mobile technologies is assessed in light of the particular requirements of health care applications. A software system architecture is outlined and discussed. The major contributions are: first, the conceptualization of multiple mobile and desktop devices as part of a single distributed computing system where software agents are being executed and interact from their remote locations. Second, the use of distributed decision making in multiagent systems, as a means to integrate remote evidence and knowledge obtained from data that is being collected and/or processed by distributed devices. The system will be applied to patients with cardiovascular or Chronic Obstructive Pulmonary Diseases (COPD) as well as to ambulatory surgery patients. The proposed system will allow to transmit the patient's location and some information about his/her illness to the hospital or care centre
Resumo:
Six-port network is an interesting radiofrequency architecture with multiple possibilities. Since it was firstly introduced in the seventies as an alternative network analyzer, the six-port network has been used for many applications, such as homodyne receivers, radar systems, direction of arrival estimation, UWB (Ultra-Wide-Band), or MIMO (Multiple Input Multiple Output) systems. Currently, it is considered as a one of the best candidates to implement a Software Defined Radio (SDR). This thesis comprises an exhaustive study of this promising architecture, where its fundamentals and the state-of-the-art are also included. In addition, the design and development of a SDR 0.3-6 GHz six-port receiver prototype is presented in this thesis, which is implemented in conventional technology. The system is experimentally characterized and validated for RF signal demodulation with good performance. The analysis of the six-port architecture is complemented by a theoretical and experimental comparison with other radiofrequency architectures suitable for SDR. Some novel contributions are introduced in the present thesis. Such novelties are in the direction of the highly topical issues on six-port technique: development and optimization of real-time I-Q regeneration techniques for multiport networks; and search of new techniques and technologies to contribute to the miniaturization of the six-port architecture. In particular, the novel contributions of this thesis can be summarized as: - Introduction of a new real-time auto-calibration method for multiport receivers, particularly suitable for broadband designs and high data rate applications. - Introduction of a new direct baseband I-Q regeneration technique for five-port receivers. - Contribution to the miniaturization of six-port receivers by the use of the multilayer LTCC (Low Temperature Cofired Ceramic) technology. Implementation of a compact (30x30x1.25 mm) broadband (0.3-6 GHz) six-port receiver in LTTC technology. The results and conclusions derived from this thesis have been satisfactory, and quite fruitful in terms of publications. A total of fourteen works have been published, considering international journals and conferences, and national conferences. Aditionally, a paper has been submitted to an internationally recognized journal, which is currently under review.
Resumo:
The constant development of digital systems in radio communications demands the adaptation of the current receiving equipment to the new technologies. In this context, a new Software Defined Radio based receiver is being implemented with the aim of carrying out different experiments to analyze the propagation of signals through the atmosphere from a satellite beacon. The receiver selected for this task is the PERSEUS SDR from the Italian company Microtelecom s.r.l. It is a software defined VLF-LF-MF-HF receiver based on an outstanding direct sampling digital architecture which features a 14 bit 80 MSamples/s analog-to-digital converter, a high-performance FPGA-based digital down-converter and a high-speed 480 Mbit/s USB2.0 PC interface. The main goal is to implement the related software and adapt the new receiver to the current working environment. In this paper, SDR technology guidelines are given and PERSEUS receiver digital signal processing is presented with the most remarkable results.
Resumo:
The Robuter is a robotic mobile platform that is located in the “Hands-On” Laboratory of the IPP-Hurray! Research Group, at the School of Engineering of the Polytechnic Institute of Porto. Recently, the Robuter was subject of an upgrading process addressing two essential areas: the Hardware Architecture and the Software Architecture. This upgrade in process was triggered due to technical problems on-board of the robot and also to the fact that the hardware/software architecture has become obsolete. This Technical Report overviews the most important aspects of the new Hardware and Software Architectures of the Robuter. This document also presents a first approach on the first steps towards the use of the Robuter platform, and provides some hints on future work that may be carried out using this mobile platform.
Resumo:
In the past years, Software Architecture has attracted increased attention by academia and industry as the unifying concept to structure the design of complex systems. One particular research area deals with the possibility of reconfiguring architectures to adapt the systems they describe to new requirements. Reconfiguration amounts to adding and removing components and connections, and may have to occur without stopping the execution of the system being reconfigured. This work contributes to the formal description of such a process. Taking as a premise that a single formalism hardly ever satisfies all requirements in every situation, we present three approaches, each one with its own assumptions about the systems it can be applied to and with different advantages and disadvantages. Each approach is based on work of other researchers and has the aesthetic concern of changing as little as possible the original formalism, keeping its spirit. The first approach shows how a given reconfiguration can be specified in the same manner as the system it is applied to and in a way to be efficiently executed. The second approach explores the Chemical Abstract Machine, a formalism for rewriting multisets of terms, to describe architectures, computations, and reconfigurations in a uniform way. The last approach uses a UNITY-like parallel programming design language to describe computations, represents architectures by diagrams in the sense of Category Theory, and specifies reconfigurations by graph transformation rules.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do Grau de Mestre em Engenharia Informática