936 resultados para Small World Graphs
Resumo:
The power-law size distributions obtained experimentally for neuronal avalanches are an important evidence of criticality in the brain. This evidence is supported by the fact that a critical branching process exhibits the same exponent t~3=2. Models at criticality have been employed to mimic avalanche propagation and explain the statistics observed experimentally. However, a crucial aspect of neuronal recordings has been almost completely neglected in the models: undersampling. While in a typical multielectrode array hundreds of neurons are recorded, in the same area of neuronal tissue tens of thousands of neurons can be found. Here we investigate the consequences of undersampling in models with three different topologies (two-dimensional, small-world and random network) and three different dynamical regimes (subcritical, critical and supercritical). We found that undersampling modifies avalanche size distributions, extinguishing the power laws observed in critical systems. Distributions from subcritical systems are also modified, but the shape of the undersampled distributions is more similar to that of a fully sampled system. Undersampled supercritical systems can recover the general characteristics of the fully sampled version, provided that enough neurons are measured. Undersampling in two-dimensional and small-world networks leads to similar effects, while the random network is insensitive to sampling density due to the lack of a well-defined neighborhood. We conjecture that neuronal avalanches recorded from local field potentials avoid undersampling effects due to the nature of this signal, but the same does not hold for spike avalanches. We conclude that undersampled branching-process-like models in these topologies fail to reproduce the statistics of spike avalanches.
Resumo:
This contribution reviews the current state of art comprising the application of Complex Networks Theory to the analysis of functional brain networks. We briefly overview the main advances in this field during the last decade and we explain how graph analysis has increased our knowledge about how the brain behaves when performing a specific task or how it fails when a certain pathology arises. We also show the limitations of this kind of analysis, which have been a source of confusion and misunderstanding when interpreting the results obtained. Finally, we discuss about a possible direction to follow in the next years.
Resumo:
We study the dynamical states of a small-world network of recurrently coupled excitable neurons, through both numerical and analytical methods. The dynamics of this system depend mostly on both the number of long-range connections or ?shortcuts?, and the delay associated with neuronal interactions. We find that persistent activity emerges at low density of shortcuts, and that the system undergoes a transition to failure as their density reaches a critical value. The state of persistent activity below this transition consists of multiple stable periodic attractors, whose number increases at least as fast as the number of neurons in the network. At large shortcut density and for long enough delays the network dynamics exhibit exceedingly long chaotic transients, whose failure times follow a stretched exponential distribution. We show that this functional form arises for the ensemble-averaged activity if the failure time for each individual network realization is exponen- tially distributed
Resumo:
Inspections are used to prevent tax evasion or any other unlawful behavior. ? The effect of inspections depends on the network topology and the contagion rule. ? The network is modeled as a Watts?Strogatz Small World that is tuned from regular to random. ? Two contagion rules are applied: continuous and discontinuous. ? The equilibrium populations of payers and evaders are obtained in terms of these system parameters.
Resumo:
The power-law size distributions obtained experimentally for neuronal avalanches are an important evidence of criticality in the brain. This evidence is supported by the fact that a critical branching process exhibits the same exponent t~3=2. Models at criticality have been employed to mimic avalanche propagation and explain the statistics observed experimentally. However, a crucial aspect of neuronal recordings has been almost completely neglected in the models: undersampling. While in a typical multielectrode array hundreds of neurons are recorded, in the same area of neuronal tissue tens of thousands of neurons can be found. Here we investigate the consequences of undersampling in models with three different topologies (two-dimensional, small-world and random network) and three different dynamical regimes (subcritical, critical and supercritical). We found that undersampling modifies avalanche size distributions, extinguishing the power laws observed in critical systems. Distributions from subcritical systems are also modified, but the shape of the undersampled distributions is more similar to that of a fully sampled system. Undersampled supercritical systems can recover the general characteristics of the fully sampled version, provided that enough neurons are measured. Undersampling in two-dimensional and small-world networks leads to similar effects, while the random network is insensitive to sampling density due to the lack of a well-defined neighborhood. We conjecture that neuronal avalanches recorded from local field potentials avoid undersampling effects due to the nature of this signal, but the same does not hold for spike avalanches. We conclude that undersampled branching-process-like models in these topologies fail to reproduce the statistics of spike avalanches.
Resumo:
The power-law size distributions obtained experimentally for neuronal avalanches are an important evidence of criticality in the brain. This evidence is supported by the fact that a critical branching process exhibits the same exponent t~3=2. Models at criticality have been employed to mimic avalanche propagation and explain the statistics observed experimentally. However, a crucial aspect of neuronal recordings has been almost completely neglected in the models: undersampling. While in a typical multielectrode array hundreds of neurons are recorded, in the same area of neuronal tissue tens of thousands of neurons can be found. Here we investigate the consequences of undersampling in models with three different topologies (two-dimensional, small-world and random network) and three different dynamical regimes (subcritical, critical and supercritical). We found that undersampling modifies avalanche size distributions, extinguishing the power laws observed in critical systems. Distributions from subcritical systems are also modified, but the shape of the undersampled distributions is more similar to that of a fully sampled system. Undersampled supercritical systems can recover the general characteristics of the fully sampled version, provided that enough neurons are measured. Undersampling in two-dimensional and small-world networks leads to similar effects, while the random network is insensitive to sampling density due to the lack of a well-defined neighborhood. We conjecture that neuronal avalanches recorded from local field potentials avoid undersampling effects due to the nature of this signal, but the same does not hold for spike avalanches. We conclude that undersampled branching-process-like models in these topologies fail to reproduce the statistics of spike avalanches.
Resumo:
We have been investigating the cryptographical properties of in nite families of simple graphs of large girth with the special colouring of vertices during the last 10 years. Such families can be used for the development of cryptographical algorithms (on symmetric or public key modes) and turbocodes in error correction theory. Only few families of simple graphs of large unbounded girth and arbitrarily large degree are known. The paper is devoted to the more general theory of directed graphs of large girth and their cryptographical applications. It contains new explicit algebraic constructions of in finite families of such graphs. We show that they can be used for the implementation of secure and very fast symmetric encryption algorithms. The symbolic computations technique allow us to create a public key mode for the encryption scheme based on algebraic graphs.
Discriminating Different Classes of Biological Networks by Analyzing the Graphs Spectra Distribution
Resumo:
The brain's structural and functional systems, protein-protein interaction, and gene networks are examples of biological systems that share some features of complex networks, such as highly connected nodes, modularity, and small-world topology. Recent studies indicate that some pathologies present topological network alterations relative to norms seen in the general population. Therefore, methods to discriminate the processes that generate the different classes of networks (e. g., normal and disease) might be crucial for the diagnosis, prognosis, and treatment of the disease. It is known that several topological properties of a network (graph) can be described by the distribution of the spectrum of its adjacency matrix. Moreover, large networks generated by the same random process have the same spectrum distribution, allowing us to use it as a "fingerprint". Based on this relationship, we introduce and propose the entropy of a graph spectrum to measure the "uncertainty" of a random graph and the Kullback-Leibler and Jensen-Shannon divergences between graph spectra to compare networks. We also introduce general methods for model selection and network model parameter estimation, as well as a statistical procedure to test the nullity of divergence between two classes of complex networks. Finally, we demonstrate the usefulness of the proposed methods by applying them to (1) protein-protein interaction networks of different species and (2) on networks derived from children diagnosed with Attention Deficit Hyperactivity Disorder (ADHD) and typically developing children. We conclude that scale-free networks best describe all the protein-protein interactions. Also, we show that our proposed measures succeeded in the identification of topological changes in the network while other commonly used measures (number of edges, clustering coefficient, average path length) failed.
Resumo:
Background: A genetic network can be represented as a directed graph in which a node corresponds to a gene and a directed edge specifies the direction of influence of one gene on another. The reconstruction of such networks from transcript profiling data remains an important yet challenging endeavor. A transcript profile specifies the abundances of many genes in a biological sample of interest. Prevailing strategies for learning the structure of a genetic network from high-dimensional transcript profiling data assume sparsity and linearity. Many methods consider relatively small directed graphs, inferring graphs with up to a few hundred nodes. This work examines large undirected graphs representations of genetic networks, graphs with many thousands of nodes where an undirected edge between two nodes does not indicate the direction of influence, and the problem of estimating the structure of such a sparse linear genetic network (SLGN) from transcript profiling data. Results: The structure learning task is cast as a sparse linear regression problem which is then posed as a LASSO (l1-constrained fitting) problem and solved finally by formulating a Linear Program (LP). A bound on the Generalization Error of this approach is given in terms of the Leave-One-Out Error. The accuracy and utility of LP-SLGNs is assessed quantitatively and qualitatively using simulated and real data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) initiative provides gold standard data sets and evaluation metrics that enable and facilitate the comparison of algorithms for deducing the structure of networks. The structures of LP-SLGNs estimated from the INSILICO1, INSILICO2 and INSILICO3 simulated DREAM2 data sets are comparable to those proposed by the first and/or second ranked teams in the DREAM2 competition. The structures of LP-SLGNs estimated from two published Saccharomyces cerevisae cell cycle transcript profiling data sets capture known regulatory associations. In each S. cerevisiae LP-SLGN, the number of nodes with a particular degree follows an approximate power law suggesting that its degree distributions is similar to that observed in real-world networks. Inspection of these LP-SLGNs suggests biological hypotheses amenable to experimental verification. Conclusion: A statistically robust and computationally efficient LP-based method for estimating the topology of a large sparse undirected graph from high-dimensional data yields representations of genetic networks that are biologically plausible and useful abstractions of the structures of real genetic networks. Analysis of the statistical and topological properties of learned LP-SLGNs may have practical value; for example, genes with high random walk betweenness, a measure of the centrality of a node in a graph, are good candidates for intervention studies and hence integrated computational – experimental investigations designed to infer more realistic and sophisticated probabilistic directed graphical model representations of genetic networks. The LP-based solutions of the sparse linear regression problem described here may provide a method for learning the structure of transcription factor networks from transcript profiling and transcription factor binding motif data.
Resumo:
This thesis elaborates on the problem of preprocessing a large graph so that single-pair shortest-path queries can be answered quickly at runtime. Computing shortest paths is a well studied problem, but exact algorithms do not scale well to real-world huge graphs in applications that require very short response time. The focus is on approximate methods for distance estimation, in particular in landmarks-based distance indexing. This approach involves choosing some nodes as landmarks and computing (offline), for each node in the graph its embedding, i.e., the vector of its distances from all the landmarks. At runtime, when the distance between a pair of nodes is queried, it can be quickly estimated by combining the embeddings of the two nodes. Choosing optimal landmarks is shown to be hard and thus heuristic solutions are employed. Given a budget of memory for the index, which translates directly into a budget of landmarks, different landmark selection strategies can yield dramatically different results in terms of accuracy. A number of simple methods that scale well to large graphs are therefore developed and experimentally compared. The simplest methods choose central nodes of the graph, while the more elaborate ones select central nodes that are also far away from one another. The efficiency of the techniques presented in this thesis is tested experimentally using five different real world graphs with millions of edges; for a given accuracy, they require as much as 250 times less space than the current approach which considers selecting landmarks at random. Finally, they are applied in two important problems arising naturally in large-scale graphs, namely social search and community detection.
Resumo:
Real-world graphs or networks tend to exhibit a well-known set of properties, such as heavy-tailed degree distributions, clustering and community formation. Much effort has been directed into creating realistic and tractable models for unlabelled graphs, which has yielded insights into graph structure and evolution. Recently, attention has moved to creating models for labelled graphs: many real-world graphs are labelled with both discrete and numeric attributes. In this paper, we present AGWAN (Attribute Graphs: Weighted and Numeric), a generative model for random graphs with discrete labels and weighted edges. The model is easily generalised to edges labelled with an arbitrary number of numeric attributes. We include algorithms for fitting the parameters of the AGWAN model to real-world graphs and for generating random graphs from the model. Using the Enron “who communicates with whom” social graph, we compare our approach to state-of-the-art random labelled graph generators and draw conclusions about the contribution of discrete vertex labels and edge weights to the structure of real-world graphs.
Resumo:
Real-world graphs or networks tend to exhibit a well-known set of properties, such as heavy-tailed degree distributions, clustering and community formation. Much effort has been directed into creating realistic and tractable models for unlabelled graphs, which has yielded insights into graph structure and evolution. Recently, attention has moved to creating models for labelled graphs: many real-world graphs are labelled with both discrete and numeric attributes. In this paper, we presentAgwan (Attribute Graphs: Weighted and Numeric), a generative model for random graphs with discrete labels and weighted edges. The model is easily generalised to edges labelled with an arbitrary number of numeric attributes. We include algorithms for fitting the parameters of the Agwanmodel to real-world graphs and for generating random graphs from the model. Using real-world directed and undirected graphs as input, we compare our approach to state-of-the-art random labelled graph generators and draw conclusions about the contribution of discrete vertex labels and edge weights to graph structure.
Resumo:
For many networks in nature, science and technology, it is possible to order the nodes so that most links are short-range, connecting near-neighbours, and relatively few long-range links, or shortcuts, are present. Given a network as a set of observed links (interactions), the task of finding an ordering of the nodes that reveals such a range-dependent structure is closely related to some sparse matrix reordering problems arising in scientific computation. The spectral, or Fiedler vector, approach for sparse matrix reordering has successfully been applied to biological data sets, revealing useful structures and subpatterns. In this work we argue that a periodic analogue of the standard reordering task is also highly relevant. Here, rather than encouraging nonzeros only to lie close to the diagonal of a suitably ordered adjacency matrix, we also allow them to inhabit the off-diagonal corners. Indeed, for the classic small-world model of Watts & Strogatz (1998, Collective dynamics of ‘small-world’ networks. Nature, 393, 440–442) this type of periodic structure is inherent. We therefore devise and test a new spectral algorithm for periodic reordering. By generalizing the range-dependent random graph class of Grindrod (2002, Range-dependent random graphs and their application to modeling large small-world proteome datasets. Phys. Rev. E, 66, 066702-1–066702-7) to the periodic case, we can also construct a computable likelihood ratio that suggests whether a given network is inherently linear or periodic. Tests on synthetic data show that the new algorithm can detect periodic structure, even in the presence of noise. Further experiments on real biological data sets then show that some networks are better regarded as periodic than linear. Hence, we find both qualitative (reordered networks plots) and quantitative (likelihood ratios) evidence of periodicity in biological networks.
Resumo:
American policy-makers are predisposed towards the idea of a necessary war of survival, fought with little room for choice. This reflects a dominant memory of World War II that teaches Americans that they live in a dangerously small world that imposes conflict. Critics argue that the ‘choice versus necessity’ schema is ahistorical and mischievous. This article offers supporting fire to those critiques. America’s war against the Axis (1941–45) is a crucial case through which to test the ‘small world’ view. Arguments for war in 1941 pose overblown scenarios of the rise of a Eurasian super-threat. In 1941 conflict was discretionary and not strictly necessary in the interests of national security. The argument for intervention is a closer call that often assumed. This has implications for America’s choices today.
Resumo:
In this work a study of social networks based on analysis of family names is presented. A basic approach to the mathematical formalism of graphs is developed and then main theoretical models for complex networks are presented aiming to support the analysis of surnames networks models. These, in turn, are worked so as to be drawn leading quantities, such as aggregation coefficient, minimum average path length and connectivity distribution. Based on these quantities, it can be stated that surnames networks are an example of complex network, showing important features such as preferential attachment and small-world character