Multiple attractors, long chaotic transients, and failure in small-world networks of excitable neurons.


Autoria(s): Riecke, Hermann; Roxin, Alex; Madruga Sánchez, Santiago; Solla, Sara A.
Data(s)

2007

Resumo

We study the dynamical states of a small-world network of recurrently coupled excitable neurons, through both numerical and analytical methods. The dynamics of this system depend mostly on both the number of long-range connections or ?shortcuts?, and the delay associated with neuronal interactions. We find that persistent activity emerges at low density of shortcuts, and that the system undergoes a transition to failure as their density reaches a critical value. The state of persistent activity below this transition consists of multiple stable periodic attractors, whose number increases at least as fast as the number of neurons in the network. At large shortcut density and for long enough delays the network dynamics exhibit exceedingly long chaotic transients, whose failure times follow a stretched exponential distribution. We show that this functional form arises for the ensemble-averaged activity if the failure time for each individual network realization is exponen- tially distributed

Formato

application/pdf

Identificador

http://oa.upm.es/21699/

Idioma(s)

spa

Publicador

E.T.S.I. Aeronáuticos (UPM)

Relação

http://oa.upm.es/21699/1/INVE_MEM_2007_146408.pdf

info:eu-repo/semantics/altIdentifier/doi/1054-1500/2007/17?2?/026110/15

Direitos

http://creativecommons.org/licenses/by-nc-nd/3.0/es/

info:eu-repo/semantics/openAccess

Fonte

CHAOS, ISSN 1054-1500, 2007, Vol. 17

Palavras-Chave #Matemáticas
Tipo

info:eu-repo/semantics/article

Artículo

PeerReviewed