904 resultados para Simultaneous Localization


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Simultaneous Localization and Mapping (SLAM) do not result in consistent maps of large areas because of gradual increase of the uncertainty for long term missions. In addition, as the size of the map grows the computational cost increases, making SLAM solutions unsuitable for on-line applications. This thesis surveys SLAM approaches paying special attention to those approaches aimed to work on large scenarios. Special focus is given to existing underwater SLAM applications. A technique based on using independent local maps together with a global stochastic map is presented. This technique is called Selective Submap Joining SLAM (SSJS). A global map contains relative transformations between local maps, which are updated once a new loop is detected. Maps sharing several features are fused, maintaining the correlation between landmarks and vehicle's pose. The use of local maps reduces computational costs and improves map consistency as compared to state of the art techniques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Localization and Mapping are two of the most important capabilities for autonomous mobile robots and have been receiving considerable attention from the scientific computing community over the last 10 years. One of the most efficient methods to address these problems is based on the use of the Extended Kalman Filter (EKF). The EKF simultaneously estimates a model of the environment (map) and the position of the robot based on odometric and exteroceptive sensor information. As this algorithm demands a considerable amount of computation, it is usually executed on high end PCs coupled to the robot. In this work we present an FPGA-based architecture for the EKF algorithm that is capable of processing two-dimensional maps containing up to 1.8 k features at real time (14 Hz), a three-fold improvement over a Pentium M 1.6 GHz, and a 13-fold improvement over an ARM920T 200 MHz. The proposed architecture also consumes only 1.3% of the Pentium and 12.3% of the ARM energy per feature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper proposes a parallel hardware architecture for image feature detection based on the Scale Invariant Feature Transform algorithm and applied to the Simultaneous Localization And Mapping problem. The work also proposes specific hardware optimizations considered fundamental to embed such a robotic control system on-a-chip. The proposed architecture is completely stand-alone; it reads the input data directly from a CMOS image sensor and provides the results via a field-programmable gate array coupled to an embedded processor. The results may either be used directly in an on-chip application or accessed through an Ethernet connection. The system is able to detect features up to 30 frames per second (320 x 240 pixels) and has accuracy similar to a PC-based implementation. The achieved system performance is at least one order of magnitude better than a PC-based solution, a result achieved by investigating the impact of several hardware-orientated optimizations oil performance, area and accuracy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

SANTANA, André M.; SANTIAGO, Gutemberg S.; MEDEIROS, Adelardo A. D. Real-Time Visual SLAM Using Pre-Existing Floor Lines as Landmarks and a Single Camera. In: CONGRESSO BRASILEIRO DE AUTOMÁTICA, 2008, Juiz de Fora, MG. Anais... Juiz de Fora: CBA, 2008.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The goal of this work is to propose a SLAM (Simultaneous Localization and Mapping) solution based on Extended Kalman Filter (EKF) in order to make possible a robot navigates along the environment using information from odometry and pre-existing lines on the floor. Initially, a segmentation step is necessary to classify parts of the image in floor or non floor . Then the image processing identifies floor lines and the parameters of these lines are mapped to world using a homography matrix. Finally, the identified lines are used in SLAM as landmarks in order to build a feature map. In parallel, using the corrected robot pose, the uncertainty about the pose and also the part non floor of the image, it is possible to build an occupancy grid map and generate a metric map with the obstacle s description. A greater autonomy for the robot is attained by using the two types of obtained map (the metric map and the features map). Thus, it is possible to run path planning tasks in parallel with localization and mapping. Practical results are presented to validate the proposal

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development and refinement of techniques that make simultaneous localization and mapping (SLAM) for an autonomous mobile robot and the building of local 3-D maps from a sequence of images, is widely studied in scientific circles. This work presents a monocular visual SLAM technique based on extended Kalman filter, which uses features found in a sequence of images using the SURF descriptor (Speeded Up Robust Features) and determines which features can be used as marks by a technique based on delayed initialization from 3-D straight lines. For this, only the coordinates of the features found in the image and the intrinsic and extrinsic camera parameters are avaliable. Its possible to determine the position of the marks only on the availability of information of depth. Tests have shown that during the route, the mobile robot detects the presence of characteristics in the images and through a proposed technique for delayed initialization of marks, adds new marks to the state vector of the extended Kalman filter (EKF), after estimating the depth of features. With the estimated position of the marks, it was possible to estimate the updated position of the robot at each step, obtaining good results that demonstrate the effectiveness of monocular visual SLAM system proposed in this paper

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In Simultaneous Localization and Mapping (SLAM - Simultaneous Localization and Mapping), a robot placed in an unknown location in any environment must be able to create a perspective of this environment (a map) and is situated in the same simultaneously, using only information captured by the robot s sensors and control signals known. Recently, driven by the advance of computing power, work in this area have proposed to use video camera as a sensor and it came so Visual SLAM. This has several approaches and the vast majority of them work basically extracting features of the environment, calculating the necessary correspondence and through these estimate the required parameters. This work presented a monocular visual SLAM system that uses direct image registration to calculate the image reprojection error and optimization methods that minimize this error and thus obtain the parameters for the robot pose and map of the environment directly from the pixels of the images. Thus the steps of extracting and matching features are not needed, enabling our system works well in environments where traditional approaches have difficulty. Moreover, when addressing the problem of SLAM as proposed in this work we avoid a very common problem in traditional approaches, known as error propagation. Worrying about the high computational cost of this approach have been tested several types of optimization methods in order to find a good balance between good estimates and processing time. The results presented in this work show the success of this system in different environments

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work intends to show a new and few explored SLAM approach inside the simultaneous localization and mapping problem (SLAM). The purpose is to put a mobile robot to work in an indoor environment. The robot should map the environment and localize itself in the map. The robot used in the tests has an upward camera and encoders on the wheels. The landmarks in this built map are light splotches on the images of the camera caused by luminaries on the ceil. This work develops a solution based on Extended Kalman Filter to the SLAM problem using a developed observation model. Several developed tests and softwares to accomplish the SLAM experiments are shown in details

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis investigates interactive scene reconstruction and understanding using RGB-D data only. Indeed, we believe that depth cameras will still be in the near future a cheap and low-power 3D sensing alternative suitable for mobile devices too. Therefore, our contributions build on top of state-of-the-art approaches to achieve advances in three main challenging scenarios, namely mobile mapping, large scale surface reconstruction and semantic modeling. First, we will describe an effective approach dealing with Simultaneous Localization And Mapping (SLAM) on platforms with limited resources, such as a tablet device. Unlike previous methods, dense reconstruction is achieved by reprojection of RGB-D frames, while local consistency is maintained by deploying relative bundle adjustment principles. We will show quantitative results comparing our technique to the state-of-the-art as well as detailed reconstruction of various environments ranging from rooms to small apartments. Then, we will address large scale surface modeling from depth maps exploiting parallel GPU computing. We will develop a real-time camera tracking method based on the popular KinectFusion system and an online surface alignment technique capable of counteracting drift errors and closing small loops. We will show very high quality meshes outperforming existing methods on publicly available datasets as well as on data recorded with our RGB-D camera even in complete darkness. Finally, we will move to our Semantic Bundle Adjustment framework to effectively combine object detection and SLAM in a unified system. Though the mathematical framework we will describe does not restrict to a particular sensing technology, in the experimental section we will refer, again, only to RGB-D sensing. We will discuss successful implementations of our algorithm showing the benefit of a joint object detection, camera tracking and environment mapping.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Viene proposto un porting su piattaforma mobile Android di un sistema SLAM (Simultaneous Localization And Mapping) chiamato SlamDunk. Il porting affronta problematiche di prestazioni e qualità delle ricostruzioni 3D ottenute, proponendo poi la soluzione ritenuta ottimale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose To this day, the slit lamp remains the first tool used by an ophthalmologist to examine patient eyes. Imaging of the retina poses, however, a variety of problems, namely a shallow depth of focus, reflections from the optical system, a small field of view and non-uniform illumination. For ophthalmologists, the use of slit lamp images for documentation and analysis purposes, however, remains extremely challenging due to large image artifacts. For this reason, we propose an automatic retinal slit lamp video mosaicking, which enlarges the field of view and reduces amount of noise and reflections, thus enhancing image quality. Methods Our method is composed of three parts: (i) viable content segmentation, (ii) global registration and (iii) image blending. Frame content is segmented using gradient boosting with custom pixel-wise features. Speeded-up robust features are used for finding pair-wise translations between frames with robust random sample consensus estimation and graph-based simultaneous localization and mapping for global bundle adjustment. Foreground-aware blending based on feathering merges video frames into comprehensive mosaics. Results Foreground is segmented successfully with an area under the curve of the receiver operating characteristic curve of 0.9557. Mosaicking results and state-of-the-art methods were compared and rated by ophthalmologists showing a strong preference for a large field of view provided by our method. Conclusions The proposed method for global registration of retinal slit lamp images of the retina into comprehensive mosaics improves over state-of-the-art methods and is preferred qualitatively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of 3D data in mobile robotics provides valuable information about the robot’s environment. Traditionally, stereo cameras have been used as a low-cost 3D sensor. However, the lack of precision and texture for some surfaces suggests that the use of other 3D sensors could be more suitable. In this work, we examine the use of two sensors: an infrared SR4000 and a Kinect camera. We use a combination of 3D data obtained by these cameras, along with features obtained from 2D images acquired from these cameras, using a Growing Neural Gas (GNG) network applied to the 3D data. The goal is to obtain a robust egomotion technique. The GNG network is used to reduce the camera error. To calculate the egomotion, we test two methods for 3D registration. One is based on an iterative closest points algorithm, and the other employs random sample consensus. Finally, a simultaneous localization and mapping method is applied to the complete sequence to reduce the global error. The error from each sensor and the mapping results from the proposed method are examined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a method for fast calculation of the egomotion done by a robot using visual features. The method is part of a complete system for automatic map building and Simultaneous Localization and Mapping (SLAM). The method uses optical flow in order to determine if the robot has done a movement. If so, some visual features which do not accomplish several criteria (like intersection, unicity, etc,) are deleted, and then the egomotion is calculated. We use a state-of-the-art algorithm (TORO) in order to rectify the map and solve the SLAM problem. The proposed method provides better efficiency that other current methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Al giorno d’oggi quasi tutte le persone possiedono un mezzo motorizzato che utilizzano per spostarsi. Tale operazione, che risulta semplice per una persona, può essere compiuta da un robot o un autoveicolo in modo autonomo? La risposta a questa domanda è si, ma se ad una persona serve solo un po’ di pratica per guidare, questa azione non risulta altrettanto immediata per dei veicoli motorizzati. In soccorso ad essi vi è la Computer Vision, un ramo dell’informatica che, in un certo senso, rende un elaboratore elettronico in grado di percepire l’ambiente circostante, nel modo in cui una persona fa con i propri occhi. Oggi ci concentreremo su due campi della computer vision, lo SLAM o Simultaneous Localization and Mapping, che rende un robot in grado di mappare, attraverso una camera, il mondo in cui si trova ed allo stesso tempo di localizzare, istante per istante, la propria posizione all’interno di esso, e la Plane Detection, che permette di estrapolare i piani presenti all’interno di una data immagine.