805 resultados para Silver Nanoparticles
Resumo:
In this work a systematic study of the dependence of the structural, electronic, and vibrational properties on nanoparticle size is performed. Based on our total energy calculations we identified three characteristic regimes associated with the nanoparticle`s dimensions: (i) below 1.5 nm (100 atoms) where remarkable molecular aspects are observed; (ii) between 1.5 and 2.0 nm (100 and 300 atoms) where the molecular behavior is influenced by the inner core crystal properties; and (iii) above 2.0 nm (more than 300 atoms) where the crystal properties are preponderant. In all considered regimes the nanoparticle`s surface modulates its properties. This modulation decreases with the increasing of the nanoparticle`s size.
Resumo:
This paper reports the preparation and characterization of poly-{trans-[RuCl(2)(vpy)(4)]-styrene-divinylbenzene} and styrene-divinylbenzene-vinylpiridine filled with nanosilver. Theses materials were synthesized by non aqueous polymerization through a chemical reaction using benzoyl peroxide as the initiator. The nanosilver was obtained from chemical reduction using NaBH(4) as reducing agent and sodium citrate as stabilizer. The nanometric dimension of nanosilver was monitored by UV-visible and confirmed through TEM. The morphology was characterized by SEM and the thermal properties were done by TGA and DSC. The antimicrobial action of the polymers impregnated with nanosilver was evaluated using both microorganisms, Staphylococcus aureus and Escherichia coli. The antimicrobial activity of the poly-{trans-[RuCl(2)(vpy)(4)]-styrene-divinylbenzene} filled with nanosilver was confirmed by the presence of an inhibition halo of the bacterial growth in seeded culture media, but was not confirmed to the styrene-divinylbenzene-vinylpiridine. The present work suggest that trans - [RuCl(2)(vpy)(4)] complex facilitate the release of silver ion from the media.
Resumo:
Carboxylic acid groups in PAH/PAA-based multilayers bind silver cations by ion exchange with the acid protons. The aggregation and spatial distribution of the nanoparticles proved to be dependent oil the process used to reduce the silver acetate aqueous solution. The reducing method with ambient light formed larger nanoparticles with diameters ranging from 4-50 nm in comparison with the reduction method using UV light, which gave particles with diameters of 2-4 nm The high toughness of samples reduced by ambient light is a result of two population distributions of particle sizes caused by different mechanisms when compared with the UV light process. According to these phenomena, a judicious choice of the spectral source call be used as a way to control the type and size of silver nanoparticles formed on PEMs. Depending on the energy of the light source, the Ag nanoparticles present cubic and/or hexagonal crystallographic structures, as confirmed by XRD. Beyond the kinetically controlled process of UV photoinduced cluster formation, the annealing produced by UV light allowed a second mechanism to modify the growth rates, spatial distribution, and phases.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Synthesis of silver nanoparticles by thermal treatment of a silver-aspartarne complex under inert atmosphere is described. Spherical metallic silver naroparticles with average diameter of 5 +/-2 nm were obtained by thermal treatment of the complex [Ag(C14H17N2O5)] 1/2H(2)O at 185 degrees C. Thermogravimetric and infrared analysis of the product show the occurrence of an ester bond cleavage of the aspartame ligand followed by rearrangement and release of a molecule of formaldehyde (H2CO), which is transformed in two strong reducing molecules, H-2 and CO. For silver reduction, the presence of the formaldehyde molecules seems to be the key process for the metallic nanoparticles fort-nation. The maintenance of the ligand crystalline structure, with the exception of the ester group loss, was noted as essential for nanoparticles formation and size control. The ligand crystalline structure was completely lost at 200 degrees C and particle growth and coalescence were observed above 250 degrees C. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Hydrated bacterial cellulose (BC) membranes obtained from cultures of Acetobacter xylinum were used in the preparation of silver nanoparticles containing cellulose membranes. In situ preparation of Ag nanoparticles was achieved from the hydrolytic decomposition of silver triethanolamine (TEA) complexes. Scanning electron microscopy (SEM) images and X-ray diffraction (XRD) patterns both lead to the observation of spherical metallic silver particles with mean diameter of 8 nm well adsorbed onto the BC fibriles. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We report the infrared-to-visible frequency upconversion in Er3+-Yb3+-codoped PbO-GeO2 glass containing silver nanoparticles (NPs). The optical excitation is made with a laser at 980 nm in resonance with the F-2(5/2)-> F-2(7/2) transition of Yb3+ ions. Intense emission bands centered at 525, 550, and 662 nm were observed corresponding to Er3+ transitions. The simultaneous influence of the Yb3+-> Er3+ energy transfer and the contribution of the intensified local field effect due to the silver NPs give origin to the enhancement of the whole frequency upconversion spectra.
Resumo:
Enhanced frequency upconversion (UC) emission was studied in Yb3+/Er3+ co-doped PbO-GeO2 glass containing silver nanoparticles (NPs). Optical excitation was achieved with a laser operating at 980 nm in resonance with the Yb3+ transition F-4(5/2)-> F-4(7/2). The intensity of the whole UC spectrum from 400 to 700 nm was intensified due to the influence of silver NPs. The green and red emissions were enhanced by more than 300%. Emission bands centered at 408 nm and 480 nm were also detected corresponding to the H-2(9/2)-> I-4(15/2) and F-4(7/2)-> I-4(15/2) transitions of Er3+ ion. An intensity enhancement of approximate to 150% due to the NPs was measured. For the first time the influence of silver NPs on the blue emission of Yb3+/Er3+ co-doped PbO-GeO2 glass is reported. The large enhancement in the whole UC spectrum is due to the increased local field in the Er3+ ions locations and the proximity between the luminescence wavelengths and the NPs surface plasmon resonance. (C) 2010 Elsevier B.V. All rights reserved.