927 resultados para Sheep - Artificial insemination - Experimental studies
Resumo:
Gypsum plasterboards are commonly used to protect the light gauge steel-framed walls in buildings from fires. Single or multiple plasterboards can be used for this purpose, whereas recent research has proposed a composite panel with a layer of external insulation between two plasterboards. However, a good understanding of the thermal behaviour of these plasterboard panels under fire conditions is not known. Therefore, 15 small-scale fire tests were conducted on plasterboard panels made of 13 and 16 mm plasterboards and four different types of insulations with varying thickness and density subject to standard fire conditions in AS 1530.4. Fire performance of single and multiple layers of gypsum plasterboards was assessed including the effects of interfaces between adjacent plasterboards. Effects of using external insulations such as glass fibre, rockwool and cellulose fibre were also determined. The thermal performance of composite panels developed from different insulating materials of varying densities and thicknesses was examined and compared. This paper presents the details of the fire tests conducted in this study and their valuable time–temperature data for the tested plasterboard panels. These data can be used for the purpose of developing and validating accurate thermal numerical models of these panels.
Resumo:
Abstract: LiteSteel beam (LSB) is a new cold-formed steel hollow flange channel section produced using a patented manufacturing process. It is commonly used as flexural members in residential, industrial and commercial buildings. Current practice in flooring systems is to include openings in the web element of floor joists or bearers so that building services can be located within them. Test results have shown that the shear capacity of LSBs can be reduced considerably by the inclusion of web openings. A cost effective method of eliminating the detrimental effects of a large web opening is to attach suitable stiffeners around the web openings of LSBs. A detailed experimental study consisting of 17 shear tests was therefore undertaken to investigate the shear behaviour and strength of LSBs with stiffened circular web openings. Both plate and stud stiffeners with varying sizes and thicknesses were attached to the web elements of LSBs using a number of screw-fastening arrangements in order to develop a suitable stiffening arrangement for LSBs. Simply supported test specimens of LSBs with an aspect ratio of 1.5 were loaded at mid-span until failure. This paper presents the details of this experimental study of LSBs with stiffened web openings, and the results of their shear capacities and associated behavioural characteristics. Suitable screw-fastened plate stiffener arrangements have been recommended in order to restore the original shear capacity of LSBs.
Resumo:
Cold-formed steel members are increasingly used as primary structural elements in the building industries around the world due to the availability of thin and high strength steels and advanced cold-forming technologies. Cold-formed lipped channel beams (LCB) are commonly used as flexural members such as floor joists and bearers. However, their shear capacities are determined based on conservative design rules. Current practice in flooring systems is to include openings in the web element of floor joists or bearers so that building services can be located within them. Shear behaviour of LCBs with web openings is more complicated while their shear strengths are considerably reduced by the presence of web openings. However, limited research has been undertaken on the shear behaviour and strength of LCBs with web openings. Hence a detailed experimental study involving 40 shear tests was undertaken to investigate the shear behaviour and strength of LCBs with web openings. Simply supported test specimens of LCBs with aspect ratios of 1.0 and 1.5 were loaded at midspan until failure. This paper presents the details of this experimental study and the results of their shear capacities and behavioural characteristics. Experimental results showed that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LCBs with web openings. Improved design equations have been proposed for the shear strength of LCBs with web openings based on the experimental results from this study.
Resumo:
This paper presents the details of an experimental study of a cold-formed steel hollow flange channel beam known as LiteSteel Beam (LSB) subject to combined bending and shear actions. The LSB sections are produced by a patented manufacturing process involving simultaneous cold-forming and electric resistance welding. Due to the geometry of the LSB, as well as its unique residual stress characteristics and initial geometric imperfections resultant of manufacturing processes, much of the existing research for common cold-formed steel sections is not directly applicable to LSB. Experimental and numerical studies have been carried out to evaluate the behaviour and design of LSBs subject to pure bending actions and predominant shear actions. To date, however, no investigation has been conducted into the strength of LSB sections under combined bending and shear actions. Combined bending and shear is especially prevalent at the supports of continuous span and cantilever beams, where the interaction of high shear force and bending moment can reduce the capacity of a section to well below that for the same section subject only to pure shear or moment. Hence experimental studies were conducted to assess the combined bending and shear behaviour and strengths of LSBs. Eighteen tests were conducted and the results were compared with current AS/NZS 4600 and AS 4100 design rules. AS/NZS 4600 design rules were shown to grossly underestimate the combined bending and shear capacities of LSBs and hence two lower bound design equations were proposed based on experimental results. Use of these equations will significantly improve the confidence and cost-effectiveness of designing LSBs for combined bending and shear actions.
Resumo:
This paper presents the details of an experimental study of a cold-formed steel hollow flange channel beam known as LiteSteel beam (LSB) subject to web crippling under End Two Flange (ETF) and Interior Two Flange (ITF) load cases. The LSB sections with two rectangular hollow flanges are made using a simultaneous cold-forming and electric resistance welding process. Due to the geometry of the LSB, and its unique residual stress characteristics and initial geometric imperfections, much of the existing research for common cold-formed steel sections is not directly applicable to LSB. Experimental and numerical studies have been carried out to evaluate the behaviour and design of LSBs subject to pure bending, predominant shear and combined actions. To date, however, no investigation has been conducted on the web crippling behaviour and strength of LSB sections. Hence an experimental study was conducted to investigate the web crippling behaviour and capacities of LSBs. Twenty-eight web crippling tests were conducted under ETF and ITF load cases, and the ultimate web crippling capacities were compared with the predictions from the design equations in AS/NZS 4600 and AISI S100. This comparison showed that AS/NZS 4600 and AISI S100 web crippling design equations are unconservative for LSB sections under ETF and ITF load cases. Hence new equations were proposed to determine the web crippling capacities of LSBs based on experimental results. Suitable design rules were also developed under the direct strength method (DSM) format.
Resumo:
The growing knowledge of the genetic polymorphisms of enzymes metabolising xenobiotics in humans and their connections with individual susceptibility towards toxicants has created new and important interfaces between human epidemiology and experimental toxicology. The results of molecular epidemiological studies may provide new hypotheses and concepts, which call for experimental verification, and experimental concepts may obtain further proof by molecular epidemiological studies. If applied diligently, these possibilities may be combined to lead to new strategies of human-oriented toxicological research. This overview will present some outstanding examples for such strategies taken from the practically very important field of occupational toxicology. The main focus is placed on the effects of enzyme polymorphisms of the xenobiotic metabolism in association with the induction of bladder cancer and renal cell cancer after exposure to occupational chemicals. Also, smoking and induction of head and neck squamous cell cancer are considered.
Resumo:
This paper reports the details of an experimental study of cold-formed steel hollow section columns at ambient and elevated temperatures. In this study the global buckling behaviour of cold-formed Square Hollow Section (SHS) slender columns under axial compression was investigated at various uniform elevated temperatures up to 700℃. The results of these column tests are reported in this paper, which include the buckling/failure modes at elevated temperatures, and ultimate load versus temperature curves. Finite element models of tested columns were also developed and their behaviour and ultimate capacities at ambient and elevated temperatures were studied. Fire design rules given in European and American standards including the Direct Strength Method (DSM) based design rules were used to predict the ultimate capacities of tested columns at elevated temperatures. Elevated temperature mechanical properties and stress-strain models given in European steel design standards and past researches were used with design rules and finite element models to investigate their effects on SHS column capacities. Comparisons of column capacities from tests and finite element analyses with those predicted by current design rules were used to determine the accuracy of currently available column design rules in predicting the capacities of SHS columns at elevated temperatures and the need to use appropriate elevated temperature material stress-strain models. This paper presents the important findings derived from the comparisons of these column capacities.
Resumo:
Lipped channel beams (LCBs) are commonly used as floor joists and bearers in buildings. However, they are subjected to specific failure modes such as web crippling. Despite considerable web crippling research, recent studies [1-6] have shown that the current web crippling design rules are unable to predict the test capacities under ETF and ITF load cases. In many instances, the predictions by the available design standards such as AISI S100, AS/NZS 4600 and Eurocode 3 Part 1-3 [7-9] are inconsistent. Hence thirty-six tests were conducted to assess the web crippling behaviour and strengths of LCBs under two flange load cases. Experimental web crippling capacities were then compared with the predictions from the current design rules. These comparisons showed that AS/NZS 4600 and AISI S100 design equations are very unconservative for LCB sections under ETF load case and are conservative for ITF load case. Hence improved equations were proposed to determine the web crippling capacities of LCBs. Suitable design rules were also developed using the direct strength method. This paper presents the details of this study and the results including improved design rules.
Resumo:
Rail joints are provided with a gap to account for thermal movement and to maintain electrical insulation for the control of signals and/or broken rail detection circuits. The gap in the rail joint is regarded as a source of significant problems for the rail industry since it leads to a very short rail service life compared with other track components due to the various, and difficult to predict, failure modes – thus increasing the risk for train operations. Many attempts to improve the life of rail joints have led to a large number of patents around the world; notable attempts include strengthening through larger-sized joint bars, an increased number of bolts and the use of high yield materials. Unfortunately, no design to date has shown the ability to prolong the life of the rail joints to values close to those for continuously welded rail (CWR). This paper reports the results of a fundamental study that has revealed that the wheel contact at the free edge of the railhead is a major problem since it generates a singularity in the contact pressure and railhead stresses. A design was therefore developed using an optimisation framework that prevents wheel contact at the railhead edge. Finite element modelling of the design has shown that the contact pressure and railhead stress singularities are eliminated, thus increasing the potential to work as effectively as a CWR that does not have a geometric gap. An experimental validation of the finite element results is presented through an innovative non-contact measurement of strains. Some practical issues related to grinding rails to the optimal design are also discussed.
Resumo:
RNase S is a complex consisting of two proteolytic fragments of RNase A: the S peptide (residues 1-20) and S protein (residues 21-124). RNase S and RNase A have very similar X-ray structures and enzymatic activities. previous experiments have shown increased rates of hydrogen exchange and greater sensitivity to tryptic cleavage for RNase S relative to RNase A. It has therefore been asserted that the RNase S complex is considerably more dynamically flexible than RNase A. In the present study we examine the differences in the dynamics of RNaseS and RNase A computationally, by MD simulations, and experimentally, using trypsin cleavage as a probe of dynamics. The fluctuations around the average solution structure during the simulation were analyzed by measuring the RMS deviation in coordinates. No significant differences between RNase S and RNase A dynamics were observed in the simulations. We were able to account for the apparent discrepancy between simulation and experiment by a simple model, According to this model, the experimentally observed differences in dynamics can be quantitatively explained by the small amounts of free S peptide and S protein that are present in equilibrium with the RNase S complex. Thus, folded RNase A and the RNase S complex have identical dynamic behavior, despite the presence of a break in polypeptide chain between residues 20 and 21 in the latter molecule. This is in contrast to what has been widely believed for over 30 years about this important fragment complementation system.
Resumo:
Drop formation at the conical tips of melting rods has been experimentally studied using the transparent wax-alcohol/acetonitrile system. The effects of cone angle, rod diameter, immersion depth, and bath temperature on the detached drop mass have been studied over a wide range, besides recording useful qualitative information based on visual observation. The experimental results suggest that the phenomenon of drop formation at the tip of melting rods has a close parallel with the drop formation at conical tips, at least on a qualitative basis. However, the results could not be quantified owing to difficulties in characterizing the physical properties of the system, despite efforts to minimize them.
Resumo:
Hypertension, obesity, dyslipidemia and dysglycemia constitute metabolic syndrome, a major public health concern, which is associated with cardiovascular mortality. High dietary salt (NaCl) is the most important dietary risk factor for elevated blood pressure. The kidney has a major role in salt-sensitive hypertension and is vulnerable to harmful effects of increased blood pressure. Elevated serum urate is a common finding in these disorders. While dysregulation of urate excretion is associated with cardiovascular diseases, present studies aimed to clarify the role of xanthine oxidoreductase (XOR), i.e. xanthine dehydrogenase (XDH) and its post-translational isoform xanthine oxidase (XO), in cardiovascular diseases. XOR yields urate from hypoxanthine and xanthine. Low oxygen levels upregulate XOR in addition to other factors. In present studies higher renal XOR activity was found in hypertension-prone rats than in the controls. Furthermore, NaCl intake increased renal XOR dose-dependently. To clarify whether XOR has any causal role in hypertension, rats were kept on NaCl diets for different periods of time, with or without a XOR inhibitor, allopurinol. While allopurinol did not alleviate hypertension, it prevented left ventricular and renal hypertrophy. Nitric oxide synthases (NOS) produce nitric oxide (NO), which mediates vasodilatation. A paucity of NO, produced by NOS inhibition, aggravated hypertension and induced renal XOR, whereas NO generating drug, alleviated salt-induced hypertension without changes in renal XOR. Zucker fa/fa rat is an animal model of metabolic syndrome. These rats developed substantial obesity and modest hypertension and showed increased hepatic and renal XOR activities. XOR was modified by diet and antihypertensive treatment. Cyclosporine (CsA) is a fungal peptide and one of the first-line immunosuppressive drugs used in the management of organ transplantation. Nephrotoxicity ensue high doses resulting in hypertension and limit CsA use. CsA increased renal XO substantially in salt-sensitive rats on a high NaCl diet, indicating a possible role for this reactive oxygen species generating isoform in CsA nephrotoxicity. Renal hypoxia, common to these rodent models of hypertension and obesity, is one of the plausible XOR inducing factors. Although XOR inhibition did not prevent hypertension, present experimental data indicate that XOR plays a role in the pathology of salt-induced cardiac and renal hypertrophy.
Resumo:
Cyclosporine-A (CsA) is widely used after organ transplantation to prevent rejection and in the treatment of autoimmune diseases. Hypertension and nephrotoxicity are common side-effects of CsA. Studies in patients on the prevention of the side-effects of CsA are difficult to conduct because the patients often receive a combination of different drugs thus making study of the side-effects of a single drug impossible. A challenge in experimental studies has been the lack of an animal model in which the side-effects concomitantly occur. Epidemiological data show an association between sodium (Na) intake and blood pressure. There is also evidence on low dietary intake of magnesium (Mg) and potassium (K) and high blood pressure. Our study was designed to develop an experimental model to study the side-effects of CsA in spontaneously hypertensive rats (SHR). On high dietary sodium, CsA caused hypertension, left ventricular hypertrophy (LVH), narrowing of the coronary arteries, small myocardial infarctions, and proteinuria, reduced creatinine clearance and histopathological renal injury in SHR. Loss of Mg into the urine caused by CsA resulted in Mg depletion in the tissues. Renal excretion of dopamine was reduced and the renin-angiotensin-aldosterone system was activated. We investigated the effects of dietary Mg and/or K and the calcium antagonist drug, isradipine, on the prevention of CsA toxicity. Dietary supplementation of Mg alone or in combination with K prevented from the deleterious pathophysiological and histopathological changes in the kidneys and the heart. K alone had little effect. Isradipine protected better than Mg from LVH, but the combination of isradipine and Mg was the most effective. Isradipine did not, however, protect against Mg loss. In our animal model, the combination of high dietary Na and treatment with CsA accelerated the development of the cardiovascular and renal changes clinically known as the side-effects of CsA. Dietary supplementation of Mg and K and reduction of Na intake and the calcium antagonist drug isradipine prevent from the deleterious effects of CsA.
Resumo:
This study compared pregnancy rates (PRs) and costs per calf born after fixed-time artificial insemination (FTAI) or AI after estrus detection (i.e., estrus detection and AI, EDAI), before and after a single PGF2α treatment in Bos indicus (Brahman-cross) heifers. On Day 0, the body weight, body condition score, and presence of a CL (46% of heifers) were determined. The heifers were then alternately allocated to one of two FTAI groups (FTAI-1, n = 139) and (FTAI-2, n = 141) and an EDAI group (n = 273). Heifers in the FTAI groups received an intravaginal progesterone-releasing device (IPRD; 0.78 g of progesterone) and 1 mg of estradiol benzoate intramuscularly (im) on Day 0. Eight days later, the IPRD was removed and heifers received 500 μg of PGF2α and 300 IU of eCG im; 24 hours later, they received 1 mg estradiol benzoate im and were submitted to FTAI 30 to 34 hours later (54 and 58 hours after IPRD removal). Heifers in the FTAI-2 group started treatment 8 days after those in the FTAI-1 group. Heifers in the EDAI group were inseminated approximately 12 hours after the detection of estrus between Days 4 and 9 at which time the heifers that had not been detected in estrus received 500 μg of PGF2α im and EDAI continued until Day 13. Heifers in the FTAI groups had a higher overall PR (proportion pregnant as per the entire group) than the EDAI group (34.6% vs. 23.2%; P = 0.003), however, conception rate (PR of heifers submitted for AI) tended to favor the estrus detection group (34.6% vs. 44.1%; P = 0.059). The cost per AI calf born was estimated to be $267.67 and $291.37 for the FTAI and EDAI groups, respectively. It was concluded that in Brahman heifers typical of those annually mated in northern Australia FTAI compared with EDAI increases the number of heifers pregnant and reduces the cost per calf born.