981 resultados para Set functions.


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The paper contains calculus rules for coderivatives of compositions, sums and intersections of set-valued mappings. The types of coderivatives considered correspond to Dini-Hadamard and limiting Dini-Hadamard subdifferentials in Gˆateaux differentiable spaces, Fréchet and limiting Fréchet subdifferentials in Asplund spaces and approximate subdifferentials in arbitrary Banach spaces. The key element of the unified approach to obtaining various calculus rules for various types of derivatives presented in the paper are simple formulas for subdifferentials of marginal, or performance functions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 26E25, 41A35, 41A36, 47H04, 54C65.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multivariate volatility forecasts are an important input in many financial applications, in particular portfolio optimisation problems. Given the number of models available and the range of loss functions to discriminate between them, it is obvious that selecting the optimal forecasting model is challenging. The aim of this thesis is to thoroughly investigate how effective many commonly used statistical (MSE and QLIKE) and economic (portfolio variance and portfolio utility) loss functions are at discriminating between competing multivariate volatility forecasts. An analytical investigation of the loss functions is performed to determine whether they identify the correct forecast as the best forecast. This is followed by an extensive simulation study examines the ability of the loss functions to consistently rank forecasts, and their statistical power within tests of predictive ability. For the tests of predictive ability, the model confidence set (MCS) approach of Hansen, Lunde and Nason (2003, 2011) is employed. As well, an empirical study investigates whether simulation findings hold in a realistic setting. In light of these earlier studies, a major empirical study seeks to identify the set of superior multivariate volatility forecasting models from 43 models that use either daily squared returns or realised volatility to generate forecasts. This study also assesses how the choice of volatility proxy affects the ability of the statistical loss functions to discriminate between forecasts. Analysis of the loss functions shows that QLIKE, MSE and portfolio variance can discriminate between multivariate volatility forecasts, while portfolio utility cannot. An examination of the effective loss functions shows that they all can identify the correct forecast at a point in time, however, their ability to discriminate between competing forecasts does vary. That is, QLIKE is identified as the most effective loss function, followed by portfolio variance which is then followed by MSE. The major empirical analysis reports that the optimal set of multivariate volatility forecasting models includes forecasts generated from daily squared returns and realised volatility. Furthermore, it finds that the volatility proxy affects the statistical loss functions’ ability to discriminate between forecasts in tests of predictive ability. These findings deepen our understanding of how to choose between competing multivariate volatility forecasts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we set out to dissociate the developmental time course of automatic symbolic number processing and cognitive control functions in grade 1-3 British primary school children. Event-related potential (ERP) and behavioral data were collected in a physical size discrimination numerical Stroop task. Task-irrelevant numerical information was processed automatically already in grade 1. Weakening interference and strengthening facilitation indicated the parallel development of general cognitive control and automatic number processing. Relationships among ERP and behavioral effects suggest that control functions play a larger role in younger children and that automaticity of number processing increases from grade 1 to 3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sequences with optimal correlation properties are much sought after for applications in communication systems. In 1980, Alltop (\emph{IEEE Trans. Inf. Theory} 26(3):350-354, 1980) described a set of sequences based on a cubic function and showed that these sequences were optimal with respect to the known bounds on auto and crosscorrelation. Subsequently these sequences were used to construct mutually unbiased bases (MUBs), a structure of importance in quantum information theory. The key feature of this cubic function is that its difference function is a planar function. Functions with planar difference functions have been called \emph{Alltop functions}. This paper provides a new family of Alltop functions and establishes the use of Alltop functions for construction of sequence sets and MUBs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a method for designing set-point regulation controllers for a class of underactuated mechanical systems in Port-Hamiltonian System (PHS) form. A new set of potential shape variables in closed loop is proposed, which can replace the set of open loop shape variables-the configuration variables that appear in the kinetic energy. With this choice, the closed-loop potential energy contains free functions of the new variables. By expressing the regulation objective in terms of these new potential shape variables, the desired equilibrium can be assigned and there is freedom to reshape the potential energy to achieve performance whilst maintaining the PHS form in closed loop. This complements contemporary results in the literature, which preserve the open-loop shape variables. As a case study, we consider a robotic manipulator mounted on a flexible base and compensate for the motion of the base while positioning the end effector with respect to the ground reference. We compare the proposed control strategy with special cases that correspond to other energy shaping strategies previously proposed in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper translates the concepts of sustainable production to three dimensions of economic, environmental and ecological sustainability to analyze optimal production scales by solving optimizing problems. Economic optimization seeks input-output combinations to maximize profits. Environmental optimization searches for input-output combinations that minimize the polluting effects of materials balance on the surrounding environment. Ecological optimization looks for input-output combinations that minimize the cumulative destruction of the entire ecosystem. Using an aggregate space, the framework illustrates that these optimal scales are often not identical because markets fail to account for all negative externalities. Profit-maximizing firms normally operate at the scales which are larger than optimal scales from the viewpoints of environmental and ecological sustainability; hence policy interventions are favoured. The framework offers a useful tool for efficiency studies and policy implication analysis. The paper provides an empirical investigation using a data set of rice farms in South Korea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article is motivated by a lung cancer study where a regression model is involved and the response variable is too expensive to measure but the predictor variable can be measured easily with relatively negligible cost. This situation occurs quite often in medical studies, quantitative genetics, and ecological and environmental studies. In this article, by using the idea of ranked-set sampling (RSS), we develop sampling strategies that can reduce cost and increase efficiency of the regression analysis for the above-mentioned situation. The developed method is applied retrospectively to a lung cancer study. In the lung cancer study, the interest is to investigate the association between smoking status and three biomarkers: polyphenol DNA adducts, micronuclei, and sister chromatic exchanges. Optimal sampling schemes with different optimality criteria such as A-, D-, and integrated mean square error (IMSE)-optimality are considered in the application. With set size 10 in RSS, the improvement of the optimal schemes over simple random sampling (SRS) is great. For instance, by using the optimal scheme with IMSE-optimality, the IMSEs of the estimated regression functions for the three biomarkers are reduced to about half of those incurred by using SRS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The object of this dissertation is to study globally defined bounded p-harmonic functions on Cartan-Hadamard manifolds and Gromov hyperbolic metric measure spaces. Such functions are constructed by solving the so called Dirichlet problem at infinity. This problem is to find a p-harmonic function on the space that extends continuously to the boundary at inifinity and obtains given boundary values there. The dissertation consists of an overview and three published research articles. In the first article the Dirichlet problem at infinity is considered for more general A-harmonic functions on Cartan-Hadamard manifolds. In the special case of two dimensions the Dirichlet problem at infinity is solved by only assuming that the sectional curvature has a certain upper bound. A sharpness result is proved for this upper bound. In the second article the Dirichlet problem at infinity is solved for p-harmonic functions on Cartan-Hadamard manifolds under the assumption that the sectional curvature is bounded outside a compact set from above and from below by functions that depend on the distance to a fixed point. The curvature bounds allow examples of quadratic decay and examples of exponential growth. In the final article a generalization of the Dirichlet problem at infinity for p-harmonic functions is considered on Gromov hyperbolic metric measure spaces. Existence and uniqueness results are proved and Cartan-Hadamard manifolds are considered as an application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The actin cytoskeleton is essential for many cellular processes, including motility, morphogenesis, endocytosis and signal transduction. Actin can exist in monomeric (G-actin) or filamentous (F-actin) form. Actin filaments are considered to be the functional form of actin, generating the protrusive forces characteristic for the actin cytoskeleton. The structure and dynamics of the actin filament and monomer pools are regulated by a large number of actin-binding proteins in eukaryotic cells. Twinfilin is an evolutionarily conserved small actin monomer binding protein. Twinfilin is composed of two ADF/cofilin-like domains, separated by a short linker and followed by a C-terminal tail. Twinfilin forms a stable, high affinity complex with ADP-G-actin, inhibits the nucleotide exchange on actin monomers, and prevents their assembly into filament ends. Twinfilin was originally identified from yeast and has since then been found from all organisms studied except plants. Not much was known about the role of twinfilin in the actin dynamics in mammalian cells before this study. We set out to unravel the mysteries still covering twinfilins functions using biochemistry, cell biology, and genetics. We identified and characterized two mouse isoforms for the previously identified mouse twinfilin-1. The new isoforms, twinfilin-2a and -2b, are generated from the same gene through alternative promoter usage. The three isoforms have distinctive expression patterns, but are similar biochemically. Twinfilin-1 is the major isoform during development and is expressed in high levels in almost all tissues examined. Twinfilin-2a is also expressed almost ubiquitously, but at lower levels. Twinfilin-2b turned out to be a muscle-specific isoform, with very high expression in heart and skeletal muscle. It seems all mouse tissues express at least two twinfilin isoforms, indicating that twinfilins are important regulators of actin dynamics in all cell and tissue types. A knockout mouse line was generated for twinfilin-2a. The mice homozygous for this knockout were viable and developed normally, indicating that twinfilin-2a is dispensable for mouse development. However, it is important to note that twinfilin-2a shows similar expression pattern to twinfilin-1, suggesting that these proteins play redundant roles in mice. All mouse isoforms were shown to be able to sequester actin filaments and have higher affinity for ADP-G-actin than ATP-G-actin. They are also able to directly interact with heterodimeric capping protein and PI(4,5)P2 similar to yeast twinfilin. In this study we also uncovered a novel function for mouse twinfilins; capping actin filament barbed ends. All mouse twinfilin isoforms were shown to possess this function, while yeast and Drosophila twinfilin were not able to cap filament barbed ends. Twinfilins localize to the cytoplasm but also to actin-rich regions in mammalian cells. The subcellular localizations of the isoforms are regulated differently, indicating that even though twinfilins biochemical functions in vitro are very similar, in vivo they can play different roles through different regulatory pathways. Together, this study show that twinfilins regulate actin filament assembly both by sequestering actin monomers and by capping filament barbed ends, and that mammals have three biochemically similar twinfilin isoforms with partially overlapping expression patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

State-of-the-art image-set matching techniques typically implicitly model each image-set with a Gaussian distribution. Here, we propose to go beyond these representations and model image-sets as probability distribution functions (PDFs) using kernel density estimators. To compare and match image-sets, we exploit Csiszar´ f-divergences, which bear strong connections to the geodesic distance defined on the space of PDFs, i.e., the statistical manifold. Furthermore, we introduce valid positive definite kernels on the statistical manifold, which let us make use of more powerful classification schemes to match image-sets. Finally, we introduce a supervised dimensionality reduction technique that learns a latent space where f-divergences reflect the class labels of the data. Our experiments on diverse problems, such as video-based face recognition and dynamic texture classification, evidence the benefits of our approach over the state-of-the-art image-set matching methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We give an explicit, direct, and fairly elementary proof that the radial energy eigenfunctions for the hydrogen atom in quantum mechanics, bound and scattering states included, form a complete set. The proof uses only some properties of the confluent hypergeometric functions and the Cauchy residue theorem from analytic function theory; therefore it would form useful supplementary reading for a graduate course on quantum mechanics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider functions that map the open unit disc conformally onto the complement of a bounded convex set. We call these functions concave univalent functions. In 1994, Livingston presented a characterization for these functions. In this paper, we observe that there is a minor flaw with this characterization. We obtain certain sharp estimates and the exact set of variability involving Laurent and Taylor coefficients for concave functions. We also present the exact set of variability of the linear combination of certain successive Taylor coefficients of concave functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article we consider a semigroup ring R = KGamma] of a numerical semigroup Gamma and study the Cohen- Macaulayness of the associated graded ring G(Gamma) := gr(m), (R) := circle plus(n is an element of N) m(n)/m(n+1) and the behaviour of the Hilbert function H-R of R. We define a certain (finite) subset B(Gamma) subset of F and prove that G(Gamma) is Cohen-Macaulay if and only if B(Gamma) = empty set. Therefore the subset B(Gamma) is called the Cohen-Macaulay defect of G(Gamma). Further, we prove that if the degree sequence of elements of the standard basis of is non-decreasing, then B(F) = empty set and hence G(Gamma) is Cohen-Macaulay. We consider a class of numerical semigroups Gamma = Sigma(3)(i=0) Nm(i) generated by 4 elements m(0), m(1), m(2), m(3) such that m(1) + m(2) = mo m3-so called ``balanced semigroups''. We study the structure of the Cohen-Macaulay defect B(Gamma) of Gamma and particularly we give an estimate on the cardinality |B(Gamma, r)| for every r is an element of N. We use these estimates to prove that the Hilbert function of R is non-decreasing. Further, we prove that every balanced ``unitary'' semigroup Gamma is ``2-good'' and is not ``1-good'', in particular, in this case, c(r) is not Cohen-Macaulay. We consider a certain special subclass of balanced semigroups Gamma. For this subclass we try to determine the Cohen-Macaulay defect B(Gamma) using the explicit description of the standard basis of Gamma; in particular, we prove that these balanced semigroups are 2-good and determine when exactly G(Gamma) is Cohen-Macaulay. (C) 2011 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we consider the problem of learning an n × n kernel matrix from m(1) similarity matrices under general convex loss. Past research have extensively studied the m = 1 case and have derived several algorithms which require sophisticated techniques like ACCP, SOCP, etc. The existing algorithms do not apply if one uses arbitrary losses and often can not handle m > 1 case. We present several provably convergent iterative algorithms, where each iteration requires either an SVM or a Multiple Kernel Learning (MKL) solver for m > 1 case. One of the major contributions of the paper is to extend the well knownMirror Descent(MD) framework to handle Cartesian product of psd matrices. This novel extension leads to an algorithm, called EMKL, which solves the problem in O(m2 log n 2) iterations; in each iteration one solves an MKL involving m kernels and m eigen-decomposition of n × n matrices. By suitably defining a restriction on the objective function, a faster version of EMKL is proposed, called REKL,which avoids the eigen-decomposition. An alternative to both EMKL and REKL is also suggested which requires only an SVMsolver. Experimental results on real world protein data set involving several similarity matrices illustrate the efficacy of the proposed algorithms.