994 resultados para Sensor de Hartmann-Shack


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Poster Purpose: A study to validate a prototype Hartmann-Shack (HS) wavefront aberrometer. Methods: The dynamic range was assessed using a calibrated model eye. It was validated against a conventional HS-aberrometer (Topcon KR1W) in 75 eyes using both instruments in random order. Additionally, intra-sessional repeatability was tested. Results: The aberrometer showed a large dynamic range of +21.0 D to −25.0 D. It was comparable to a conventional HS aberrometer for spherical-equivalent SE (MD ± 95% CI: 0.02 ± 0.49D; correlation: r = 0.995, p < 0.001), astigmatic components (J0: 0.02 ± 0.15D; r = 0.977, p < 0.001; J45: 0.03 ± 0.28; r = 0.666, p < 0.001) and HOAs RMS (0.02 ± 0.20D; r = 0.620, p < 0.001). Intra-sessional repeatability correlation was also excellent (SE = 1.000, p < 0.001; astigmatic-components J0 = 0.998, p < 0.001, J45 = 0.980, p < 0.01; HOAs RMS = 0.961, p < 0.001). Conclusions: This study confirms the validity of the prototype aberrometer. The prototype aberrometer can measure continuously to provide direct feedback of the optical status of the eye during surgery.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: To ascertain the agreement level between intra-operative refraction using a prototype surgical Hartmann-Shack aberrometer and subjective refraction a month later. Methods: Fifty-four consecutive patients had their pseudophakic refractive measured with the aberrometer intra-operatively at the end of their cataract surgery. A masked optometrist performed subjective refraction 4 weeks later. The two sets of data were then analysed for correlation. Results: The mean spherical equivalent was −0.14 ± 0.37 D (Range: −1.41 to +1.72 D) with the prototype aberrometer and −0.34 ± 0.32 (−1.64 to +1.88 D) with subjective refraction. The measurements positively correlated to a very high degree (r =+0.81, p < 0.01). In 84.3% of cases the two measurements were within 0.50D of each other. Conclusion: The aberrometer can verify the aimed refractive status of the eye intraoperatively to avoid a refractive surprise. The aberrometer is a useful tool for real time assessment of the ocular refractive status.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: To investigate the operation of the Shin-Nippon/Grand Seiko autorefractor and whether higher-order aberrations affect its peripheral refraction measurements. METHODS: Information on instrument design, together with parameters and equations used to obtain refraction, was obtained from a patent. A model eye simulating the operating principles was tested with an optical design program. Effects of induced defocus and astigmatism on the retinal image were used to calibrate the model eye to match the patent equations. Coma and trefoil were added to assess their effects on the image. Peripheral refraction of a physical model eye was measured along four visual field meridians with the Shin-Nippon/Grand Seiko autorefractor SRW-5000 and a Hartmann-Shack aberrometer, and simulated autorefractor peripheral refraction was derived using the Zernike coefficients from the aberrometer. RESULTS: In simulation, the autorefractor's square image was changed in size by defocus, into rectangles or parallelograms by astigmatism, and into irregular shapes by coma and trefoil. In the presence of 1.0 D oblique astigmatism, errors in refraction were proportional to the higher-order aberrations, with up to 0.8 D sphere and 1.5 D cylinder for ±0.6 μm of coma or trefoil coefficients with a 5-mm-diameter pupil. For the physical model eye, refraction with the aberrometer was similar in all visual field meridians, but refraction with the autorefractor changed more quickly along one oblique meridian and less quickly along the other oblique meridian than along the horizontal and vertical meridians. Simulations predicted that higher-order aberrations would affect refraction in oblique meridians, and this was supported by the experimental measurements with the physical model eye. CONCLUSIONS: The autorefractor's peripheral refraction measurements are valid for horizontal and vertical field meridians, but not for oblique field meridians. Similar instruments must be validated before being adopted outside their design scope.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Near work may play an important role in the development of myopia in the younger population. The prevalence of myopia has also been found to be higher in occupations that involve substantial near work tasks, for example in microscopists and textile workers. When nearwork is performed, it typically involves accommodation, convergence and downward gaze. A number of previous studies have examined the effects of accommodation and convergence on changes in the optics and biometrics of the eye in primary gaze. However, little is known about the influence of accommodation on the eye in downward gaze. This thesis is primarily concerned with investigating the changes in the eye during near work in downward gaze under natural viewing conditions. To measure wavefront aberrations in downward gaze under natural viewing conditions, we modified a commercial Shack-Hartmann wavefront sensor by adding a relay lens system to allow on-axis ocular aberration measurements in primary gaze and downward gaze, with binocular fixation. Measurements with the modified wavefront sensor in primary and downward gaze were validated against a conventional aberrometer using both a model eye and in 9 human subjects. We then conducted an experiment to investigate changes in ocular aberrations associated with accommodation in downward gaze over 10 mins in groups of both myopes (n = 14) and emmetropes (n =12) using the modified Shack-Hartmann wavefront sensor. During the distance accommodation task, small but significant changes in refractive power (myopic shift) and higher order aberrations were observed in downward gaze compared to primary gaze. Accommodation caused greater changes in higher order aberrations (in particular coma and spherical aberration) in downward gaze than primary gaze, and there was evidence that the changes in certain aberrations with accommodation over time were different in downward gaze compared to primary gaze. There were no obvious systematic differences in higher order aberrations between refractive error groups during accommodation or downward gaze for fixed pupils. However, myopes exhibited a significantly greater change in higher order aberrations (in particular spherical aberration) than emmetropes for natural pupils after 10 mins of a near task (5 D accommodation) in downward gaze. These findings indicated that ocular aberrations change from primary to downward gaze, particularly with accommodation. To understand the mechanism underlying these changes in greater detail, we then extended this work to examine the characteristics of the corneal optics, internal optics, anterior biometrics and axial length of the eye during a near task, in downward gaze, over 10 mins. Twenty young adult subjects (10 emmetropes and 10 myopes) participated in this study. To measure corneal topography and ocular biometrics in downward gaze, a rotating Scheimpflug camera and an optical biometer were inclined on a custom built, height and tilt adjustable table. We found that both corneal optics and internal optics change with downward gaze, resulting in a myopic shift (~0.10 D) in the spherical power of the eye. The changes in corneal optics appear to be due to eyelid pressure on the anterior surface of the cornea, whereas the changes in the internal optics (an increase in axial length and a decrease in anterior chamber depth) may be associated with movement of the crystalline lens, under the action of gravity, and the influence of altered biomechanical forces from the extraocular muscles on the globe with downward gaze. Changes in axial length with accommodation were significantly greater in downward gaze than primary gaze (p < 0.05), indicating an increased effect of the mechanical forces from the ciliary muscle and extraocular muscles. A subsequent study was conducted to investigate the changes in anterior biometrics, axial length and choroidal thickness in nine cardinal gaze directions under the actions of the extraocular muscles. Ocular biometry measurements were obtained from 30 young adults (10 emmetropes, 10 low myopes and 10 moderate myopes) through a rotating prism with 15° deviation, along the foveal axis, using a non-contact optical biometer in each of nine different cardinal directions of gaze, over 5 mins. There was a significant influence of gaze angle and time on axial length (both p < 0.001), with the greatest axial elongation (+18 ± 8 μm) occurring with infero-nasal gaze (p < 0.001) and a slight decrease in axial length in superior gaze (−12 ± 17 μm) compared with primary gaze (p < 0.001). There was a significant correlation between refractive error (spherical equivalent refraction) and the mean change in axial length in the infero-nasal gaze direction (Pearson's R2 = 0.71, p < 0.001). To further investigate the relative effect of gravity and extraocular muscle force on the axial length, we measured axial length in 15° and 25° downward gaze with the biometer inclined on a tilting table that allowed gaze shifts to occur with either full head turn but no eye turn (reflects the effect of gravity), or full eye turn with no head turn (reflects the effect of extraocular muscle forces). We observed a significant axial elongation in 15° and 25° downward gaze in the full eye turn condition. However, axial length did not change significantly in downward gaze over 5 mins (p > 0.05) in the full head turn condition. The elongation of the axial length in downward gaze appears to be due to the influence of the extraocular muscles, since the effect was not present when head turn was used instead of eye turn. The findings of these experiments collectively show the dynamic characteristics of the optics and biometrics of the eye in downward gaze during a near task, over time. These were small but significant differences between myopic and emmetropic eyes in both the optical and biomechanical changes associated with shifts of gaze direction. These differences between myopes and emmetropes could arise as a consequence of excessive eye growth associated with myopia. However the potentially additive effects of repeated or long lasting near work activities employing infero-nasal gaze could also act to promote elongation of the eye due to optical and/or biomechanical stimuli.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE To investigate changes in the characteristics of the corneal optics, total optics, anterior biometrics and axial length of the eye during a near task, in downward gaze, over 10 min. METHODS Ten emmetropes (mean - 0.14 ± 0.24 DS) and 10 myopes (mean - 2.26 ± 1.42 DS) aged from 18 to 30 years were recruited. To measure ocular biometrics and corneal topography in downward gaze, an optical biometer (Lenstar LS900) and a rotating Scheimpflug camera (Pentacam HR) were inclined on a custom built, height and tilt adjustable table. The total optics of the eye were measured in downward gaze with binocular fixation using a modified Shack-Hartmann wavefront sensor. Initially, subjects performed a distance viewing task at primary gaze for 10 min to provide a "wash-out" period for prior visual tasks. A distance task (watching video at 6 m) in downward gaze (25°) and a near task (watching video on a portable LCD screen with 2.5 D accommodation demand) in primary gaze and 25°downward gaze were then carried out, each for 10 min in a randomized order. During measurements, in dichoptic view, a Maltese cross was fixated with the right (untested) eye and the instrument’s fixation target was fixated with the subject’s tested left eye. Immediately after (0 min), 5 and 10 min from the commencement of each trial, measurements of ocular parameters were acquired in downward gaze. RESULTS Axial length exhibited a significant increase with downward gaze and accommodation over time (p<0.05). The greatest axial elongation was observed in downward gaze with 2.5 D accommodation after 10 min (mean change from baseline 23±3 µm). Downward gaze also caused greater changes in anterior chamber depth (ACD) and lens thickness (LT) with accommodation (ACD mean change -163±12µm at 10 min; LT mean change 173±17 µm at 10 min) compared to primary gaze with accommodation (ACD mean change -138±12µm at 10 min; LT mean change 131±15 µm at 10 min). Both corneal power and total ocular power changed by a small but significant amount with downward gaze (p<0.05), resulting in a myopic shift (~0.10 D) in the spherical power of the eye compared with primary gaze. CONCLUSION The axial length, anterior biometrics and ocular refraction change significantly with accommodation in downward gaze as a function of time. These findings provide new insights into the optical and bio-mechanical changes of the eye during typical near tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Adaptive Optics is the measurement and correction in real time of the wavefront aberration of the star light caused by the atmospheric turbulence, that limits the angular resolution of ground based telescopes and thus their capabilities to deep explore faint and crowded astronomical objects. The lack of natural stars enough bright to be used as reference sources for the Adaptive Optics, over a relevant fraction of the sky, led to the introduction of artificial reference stars. The so-called Laser Guide Stars are produced by exciting the Sodium atoms in a layer laying at 90km of altitude, by a powerful laser beam projected toward the sky. The possibility to turn on a reference star close to the scientific targets of interest has the drawback in an increased difficulty in the wavefront measuring, mainly due to the time instability of the Sodium layer density. These issues are increased with the telescope diameter. In view of the construction of the 42m diameter European Extremely Large Telescope a detailed investigation of the achievable performances of Adaptive Optics becomes mandatory to exploit its unique angular resolution . The goal of this Thesis was to present a complete description of a laboratory Prototype development simulating a Shack-Hartmann wavefront sensor using Laser Guide Stars as references, in the expected conditions for a 42m telescope. From the conceptual design, through the opto-mechanical design, to the Assembly, Integration and Test, all the phases of the Prototype construction are explained. The tests carried out shown the reliability of the images produced by the Prototype that agreed with the numerical simulations. For this reason some possible upgrades regarding the opto-mechanical design are presented, to extend the system functionalities and let the Prototype become a more complete test bench to simulate the performances and drive the future Adaptive Optics modules design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Process Control Systems (PCSs) or Supervisory Control and Data Acquisition (SCADA) systems have recently been added to the already wide collection of wireless sensor networks applications. The PCS/SCADA environment is somewhat more amenable to the use of heavy cryptographic mechanisms such as public key cryptography than other sensor application environments. The sensor nodes in the environment, however, are still open to devastating attacks such as node capture, which makes designing a secure key management challenging. In this paper, a key management scheme is proposed to defeat node capture attack by offering both forward and backward secrecies. Our scheme overcomes the pitfalls which Nilsson et al.'s scheme suffers from, and is not more expensive than their scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The over represented number of novice drivers involved in crashes is alarming. Driver training is one of the interventions aimed at mitigating the number of crashes that involve young drivers. To our knowledge, Advanced Driver Assistance Systems (ADAS) have never been comprehensively used in designing an intelligent driver training system. Currently, there is a need to develop and evaluate ADAS that could assess driving competencies. The aim is to develop an unsupervised system called Intelligent Driver Training System (IDTS) that analyzes crash risks in a given driving situation. In order to design a comprehensive IDTS, data is collected from the Driver, Vehicle and Environment (DVE), synchronized and analyzed. The first implementation phase of this intelligent driver training system deals with synchronizing multiple variables acquired from DVE. RTMaps is used to collect and synchronize data like GPS, vehicle dynamics and driver head movement. After the data synchronization, maneuvers are segmented out as right turn, left turn and overtake. Each maneuver is composed of several individual tasks that are necessary to be performed in a sequential manner. This paper focuses on turn maneuvers. Some of the tasks required in the analysis of ‘turn’ maneuver are: detect the start and end of the turn, detect the indicator status change, check if the indicator was turned on within a safe distance and check the lane keeping during the turn maneuver. This paper proposes a fusion and analysis of heterogeneous data, mainly involved in driving, to determine the risk factor of particular maneuvers within the drive. It also explains the segmentation and risk analysis of the turn maneuver in a drive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Australia, the Queensland fruit fly (B. tryoni), is the most destructive insect pest of horticulture, attacking nearly all fruit and vegetable crops. This project has researched and prototyped a system for monitoring fruit flies so that authorities can be alerted when a fly enters a crop in a more efficient manner than is currently used. This paper presents the idea of our sensor platform design as well as the fruit fly detection and recognition algorithm by using machine vision techniques. Our experiments showed that the designed trap and sensor platform is capable to capture quality fly images, the invasive flies can be successfully detected and the average precision of the Queensland fruit fly recognition is 80% from our experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigates the problem of robot navigation using only landmark bearings. The proposed system allows a robot to move to a ground target location specified by the sensor values observed at this ground target posi- tion. The control actions are computed based on the difference between the current landmark bearings and the target landmark bearings. No Cartesian coordinates with respect to the ground are computed by the control system. The robot navigates using solely information from the bearing sensor space. Most existing robot navigation systems require a ground frame (2D Cartesian coordinate system) in order to navigate from a ground point A to a ground point B. The commonly used sensors such as laser range scanner, sonar, infrared, and vision do not directly provide the 2D ground coordi- nates of the robot. The existing systems use the sensor measurements to localise the robot with respect to a map, a set of 2D coordinates of the objects of interest. It is more natural to navigate between the points in the sensor space corresponding to A and B without requiring the Cartesian map and the localisation process. Research on animals has revealed how insects are able to exploit very limited computational and memory resources to successfully navigate to a desired destination without computing Cartesian positions. For example, a honeybee balances the left and right optical flows to navigate in a nar- row corridor. Unlike many other ants, Cataglyphis bicolor does not secrete pheromone trails in order to find its way home but instead uses the sun as a compass to keep track of its home direction vector. The home vector can be inaccurate, so the ant also uses landmark recognition. More precisely, it takes snapshots and compass headings of some landmarks. To return home, the ant tries to line up the landmarks exactly as they were before it started wandering. This thesis introduces a navigation method based on reflex actions in sensor space. The sensor vector is made of the bearings of some landmarks, and the reflex action is a gradient descent with respect to the distance in sensor space between the current sensor vector and the target sensor vec- tor. Our theoretical analysis shows that except for some fully characterized pathological cases, any point is reachable from any other point by reflex action in the bearing sensor space provided the environment contains three landmarks and is free of obstacles. The trajectories of a robot using reflex navigation, like other image- based visual control strategies, do not correspond necessarily to the shortest paths on the ground, because the sensor error is minimized, not the moving distance on the ground. However, we show that the use of a sequence of waypoints in sensor space can address this problem. In order to identify relevant waypoints, we train a Self Organising Map (SOM) from a set of observations uniformly distributed with respect to the ground. This SOM provides a sense of location to the robot, and allows a form of path planning in sensor space. The navigation proposed system is analysed theoretically, and evaluated both in simulation and with experiments on a real robot.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surveillance and tracking systems typically use a single colour modality for their input. These systems work well in controlled conditions but often fail with low lighting, shadowing, smoke, dust, unstable backgrounds or when the foreground object is of similar colouring to the background. With advances in technology and manufacturing techniques, sensors that allow us to see into the thermal infrared spectrum are becoming more affordable. By using modalities from both the visible and thermal infrared spectra, we are able to obtain more information from a scene and overcome the problems associated with using visible light only for surveillance and tracking. Thermal images are not affected by lighting or shadowing and are not overtly affected by smoke, dust or unstable backgrounds. We propose and evaluate three approaches for fusing visual and thermal images for person tracking. We also propose a modified condensation filter to track and aid in the fusion of the modalities. We compare the proposed fusion schemes with using the visual and thermal domains on their own, and demonstrate that significant improvements can be achieved by using multiple modalities.