851 resultados para Semi-distance learning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. IntroductionMuch of the support that students have in a traditional classroom is absent in a distance learning course. In the traditional classroom, the learner is together with his or her classmates and the teacher; learning is socially embedded. Students can talk to each other and may learn from each other as they go through the learning process together. They also witness the teacher’s expression of the knowledge firsthand. The class participants communicate to each other not only through their words, but also through their gestures, facial expressions and tone of voice, and the teacher can observe the students’ progress and provide guidance and feedback in an as-needed basis. Further, through the habit of meeting in a regular place at a regular time, the participants reinforce their own and each other’s commitment to the course. A distance course must somehow provide learners other kinds of supports so that the distance learner also has a sense of connection with a learning community; can benefit from interaction with peers who are going through a similar learning process; receives feedback that allows him or her to know how he or she is progressing; and is guided enough so that he or she continues to progress towards the learning objectives. This cannot be accomplished if the distance course does not simultaneously promote student autonomy, for the distance course format requires students to take greater responsibility for their own learning. This chapter presents one distance learning course that was able to address all of these goals. The English Department at Högskolan Dalarna, Sweden, participates in a distance learning program with Vietnam National University. Students enrolled in this program study half-time for two years to complete a Master’s degree in English Linguistics. The distance courses in this program all contain two types of regular class meetings: one type is student-only seminars conducted through text chat, during which students discuss and complete assignments that prepare them for the other type of class meeting, also conducted through text chat, where the teacher is present and is the one to lead the discussion of seminar issues and assignments. The inclusion of student-only seminars in the course design allows for student independence while at the same time it encourages co-operation and solidarity. The teacher-led seminars offer the advantages of a class led by an expert.In this chapter, we present chatlog data from Vietnamese students in one distance course in English linguistics, comparing the role of the student in both student-only and teacher-led seminars. We discuss how students navigate their participation roles, through computer-mediated communication (CMC), according to seminar type, and we consider the emerging role of the autonomous student in the foreign-language medium, distance learning environment. We close by considering aspects of effective design of distance learning courses from the perspective of a foreign language (FL) environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the experiences of long-distance courses, it focused on the continuing education of basic education teachers in all Brazilian territory. Such courses were offered by CECEMCA (Center for Continuing Education in Mathematics Education, Science and Environment), linked to the Universidade Estadual Paulista Julio de Mesquita Filho - Campus de Rio Claro during 15/01/2009 to 30/11/2009. The subjects report to the theme of Education, Geography and Environment, it was organized in four courses: "Introduction to Cartography," Environment and climate change - thinking a new paradigm of sustainable green planet "," Remote Sensing in environmental studies Environment "and" Methodological Alternatives for Inclusive Classroom: Experimenting with visual and hearing impairments". So, we show here, the feasibility and importance of distance learning tools for education, specifically teacher training, based on the results obtained in these courses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concept drift is a problem of increasing importance in machine learning and data mining. Data sets under analysis are no longer only static databases, but also data streams in which concepts and data distributions may not be stable over time. However, most learning algorithms produced so far are based on the assumption that data comes from a fixed distribution, so they are not suitable to handle concept drifts. Moreover, some concept drifts applications requires fast response, which means an algorithm must always be (re) trained with the latest available data. But the process of labeling data is usually expensive and/or time consuming when compared to unlabeled data acquisition, thus only a small fraction of the incoming data may be effectively labeled. Semi-supervised learning methods may help in this scenario, as they use both labeled and unlabeled data in the training process. However, most of them are also based on the assumption that the data is static. Therefore, semi-supervised learning with concept drifts is still an open challenge in machine learning. Recently, a particle competition and cooperation approach was used to realize graph-based semi-supervised learning from static data. In this paper, we extend that approach to handle data streams and concept drift. The result is a passive algorithm using a single classifier, which naturally adapts to concept changes, without any explicit drift detection mechanism. Its built-in mechanisms provide a natural way of learning from new data, gradually forgetting older knowledge as older labeled data items became less influent on the classification of newer data items. Some computer simulation are presented, showing the effectiveness of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents two tools developed to facilitate the use and automate the process of using Virtual Worlds for educational purposes. The first tool has been developed to automatically create the classroom space, usually called region in the virtual world, which means, a region in the virtual world used to develop educational activities between professors, students and interactive objects. The second tool helps the process of creating 3D interactive objects in a virtual world. With these tools educators will be able to produce 3D interactive learning objects and use them in virtual classrooms improving the quality and appeal, for students, of their classes. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Digital data sets constitute rich sources of information, which can be extracted and evaluated applying computational tools, for example, those ones for Information Visualization. Web-based applications, such as social network environments, forums and virtual environments for Distance Learning, are good examples for such sources. The great amount of data has direct impact on processing and analysis tasks. This paper presents the computational tool Mapper, defined and implemented to use visual representations - maps, graphics and diagrams - for supporting the decision making process by analyzing data stored in Virtual Learning Environment TelEduc-Unesp. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semi-supervised learning is applied to classification problems where only a small portion of the data items is labeled. In these cases, the reliability of the labels is a crucial factor, because mislabeled items may propagate wrong labels to a large portion or even the entire data set. This paper aims to address this problem by presenting a graph-based (network-based) semi-supervised learning method, specifically designed to handle data sets with mislabeled samples. The method uses teams of walking particles, with competitive and cooperative behavior, for label propagation in the network constructed from the input data set. The proposed model is nature-inspired and it incorporates some features to make it robust to a considerable amount of mislabeled data items. Computer simulations show the performance of the method in the presence of different percentage of mislabeled data, in networks of different sizes and average node degree. Importantly, these simulations reveals the existence of the critical points of the mislabeled subset size, below which the network is free of wrong label contamination, but above which the mislabeled samples start to propagate their labels to the rest of the network. Moreover, numerical comparisons have been made among the proposed method and other representative graph-based semi-supervised learning methods using both artificial and real-world data sets. Interestingly, the proposed method has increasing better performance than the others as the percentage of mislabeled samples is getting larger. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both Semi-Supervised Leaning and Active Learning are techniques used when unlabeled data is abundant, but the process of labeling them is expensive and/or time consuming. In this paper, those two machine learning techniques are combined into a single nature-inspired method. It features particles walking on a network built from the data set, using a unique random-greedy rule to select neighbors to visit. The particles, which have both competitive and cooperative behavior, are created on the network as the result of label queries. They may be created as the algorithm executes and only nodes affected by the new particles have to be updated. Therefore, it saves execution time compared to traditional active learning frameworks, in which the learning algorithm has to be executed several times. The data items to be queried are select based on information extracted from the nodes and particles temporal dynamics. Two different rules for queries are explored in this paper, one of them is based on querying by uncertainty approaches and the other is based on data and labeled nodes distribution. Each of them may perform better than the other according to some data sets peculiarities. Experimental results on some real-world data sets are provided, and the proposed method outperforms the semi-supervised learning method, from which it is derived, in all of them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concept drift, which refers to non stationary learning problems over time, has increasing importance in machine learning and data mining. Many concept drift applications require fast response, which means an algorithm must always be (re)trained with the latest available data. But the process of data labeling is usually expensive and/or time consuming when compared to acquisition of unlabeled data, thus usually only a small fraction of the incoming data may be effectively labeled. Semi-supervised learning methods may help in this scenario, as they use both labeled and unlabeled data in the training process. However, most of them are based on assumptions that the data is static. Therefore, semi-supervised learning with concept drifts is still an open challenging task in machine learning. Recently, a particle competition and cooperation approach has been developed to realize graph-based semi-supervised learning from static data. We have extend that approach to handle data streams and concept drift. The result is a passive algorithm which uses a single classifier approach, naturally adapted to concept changes without any explicit drift detection mechanism. It has built-in mechanisms that provide a natural way of learning from new data, gradually "forgetting" older knowledge as older data items are no longer useful for the classification of newer data items. The proposed algorithm is applied to the KDD Cup 1999 Data of network intrusion, showing its effectiveness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we show the experience of continuing teacher education in Cartography in the period from 03/11/2009 to 03/11/2010, it was held by the Center for Continuing Education in Mathematics Education, Science and Environment (CECEMCA) - UNESP - Rio Claro, in DL (Distance Learning). This experience was through the extension course set in TelEduc platform. The course was titled Introduction to Cartography and aimed primarily: Present concepts of systematic and thematic mapping and its potential application in teaching practices, increase knowledge in the areas of Geography, Cartography and Environment; Offer alternatives for implementing content mapping in the classroom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relevance feedback approaches have been established as an important tool for interactive search, enabling users to express their needs. However, in view of the growth of multimedia collections available, the user efforts required by these methods tend to increase as well, demanding approaches for reducing the need of user interactions. In this context, this paper proposes a semi-supervised learning algorithm for relevance feedback to be used in image retrieval tasks. The proposed semi-supervised algorithm aims at using both supervised and unsupervised approaches simultaneously. While a supervised step is performed using the information collected from the user feedback, an unsupervised step exploits the intrinsic dataset structure, which is represented in terms of ranked lists of images. Several experiments were conducted for different image retrieval tasks involving shape, color, and texture descriptors and different datasets. The proposed approach was also evaluated on multimodal retrieval tasks, considering visual and textual descriptors. Experimental results demonstrate the effectiveness of the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research on image processing has shown that combining segmentation methods may lead to a solid approach to extract semantic information from different sort of images. Within this context, the Normalized Cut (NCut) is usually used as a final partitioning tool for graphs modeled in some chosen method. This work explores the Watershed Transform as a modeling tool, using different criteria of the hierarchical Watershed to convert an image into an adjacency graph. The Watershed is combined with an unsupervised distance learning step that redistributes the graph weights and redefines the Similarity matrix, before the final segmentation step using NCut. Adopting the Berkeley Segmentation Data Set and Benchmark as a background, our goal is to compare the results obtained for this method with previous work to validate its performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the availability and use of audiovisual and electronic resources by distance learning students at the National Open University of Nigeria (NOUN). A questionnaire was administered tothe distance learning students selected across the various departments of the NOUN. The findings revealed that even though NOUN made provision for audiovisual and electronic resources for students' use, a majority of the audiovisual and electronic resources are available through personal provision by the students.The study also revealed regular use of audiovisual and electronic resources by the distance learning students. Constraints on use include poor power supply, poor infrastructure, lack of adequate skill, and high cost of access.