733 resultados para Segmented HPGe


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In human and animal running spring-like leg behavior is found, and similar concepts have been demonstrated by various robotic systems in the past. In general, a spring-mass model provides self-stabilizing characteristics against external perturbations originated in leg-ground interactions and motor control. Although most of these systems made use of linear spring-like legs. The question addressed in this paper is the influence of leg segmentation (i.e. the use of rotational joint and two limb-segments) to the self-stability of running, as it appears to be a common design principle in nature. This paper shows that, with the leg segmentation, the system is able to perform self-stable running behavior in significantly broader ranges of running speed and control parameters (e.g. control of angle of attack at touchdown, and adjustment of spring stiffness) by exploiting a nonlinear relationship between leg force and leg compression. The concept is investigated by using a two-segment leg model and a robotic platform, which demonstrate the plausibility in the real world. ©2008 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a high speed ROM-less direct digital frequency synthesizer (DDFS) which has a phase resolution of 32 bits and a magnitude resolution of 10 bits. A 10-bit nonlinear segmented DAC is used in place of the ROM look-up table for phase-to-sine amplitude conversion and the linear DAC in a conventional DDFS.The design procedure for implementing the nonlinear DAC is presented. To ensure high speed, current mode logic (CML) is used. The chip is implemented in Chartered 0.35μm COMS technology with active area of 2.0 × 2.5 mm~2 and total power consumption of 400 mW at a single 3.3 V supply voltage. The maximum operating frequency is 850 MHz at room temperature and 1.0 GHz at 0 ℃.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four high-purity germanium 4-fold segmented Clover detectors have been applied in the experiment of neutron-rich nucleus N-21. The performance of those, four Clovers have been tested with radioactive sources and in-beam experiments and the main results including energy resolution, peak-to-total ratios, the variation of the hit pattern distribution in difficult crystals of one Clover detector with the energy of gamma ray, and absolute full energy peak detection efficiency curve, were presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two high magnetic field hexapoles for electron cyclotron resonance ion source (ECRIS) have successfully fabricated to provide sufficient radial magnetic confinement to the ECR plasma. The highest magnetic field at the inner pole tip of one of the magnets exceeds 1.5 T, with the inner diameter (i.d.)=74 mm. The other hexapole magnet provides more than 1.35 T magnetic field at the inner pole tip, and the i.d. is 84 mm. In this article, we discuss the necessity to have a good radial magnetic field confinement and the importance of a Halbach hexapole to a high performance ECRIS. The way to design a high magnetic field Halbach structure hexapole and one possible solution to the self-demagnetization problem are both discussed. Based on the above discussions, two high magnetic field hexapoles have been fabricated to be utilized on two high performance ECRISs in Lanzhou. The preliminary results obtained from the two ECR ion sources are given

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The resolution and the summing characteristics of an EXOGAM segmented Clover germanium detector has been studied for use it in gamma spectroscopic experiments. The measurements have been performed with standard radioactive sources of Eu-152, Ba-133 and beta-delayed gamma-rays from Ir-176 decay. The data analytic results, realized by software, are presented in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthesis of segmented all-Pt nanowires is achieved by a template-assisted method. The combination of a suitably chosen electrolyte/template system with pulse-reverse electrodeposition allows the formation of well-defined segments linked to nanowires. Manipulation of the morphology is obtained by controlling the electrokinetie effects on the local electrolyte distribution inside the nanochannels during the nanowire growth process, allowing a deviation from the continuously cylindrical geometry given by the nanoporous template. The length of the segments can be adjusted as a function of the cathodic pulse duration. Applying constant pulses leads to segments with homogeneous shape and dimensions along most of the total wire length. X-ray diffraction demonstrates that the preferred crystallite orientation of the polycrystalline wires varies with the average segment length. The results are explained considering transitions in texture formation with increasing thickness of the electrodeposit. A mechanism of segment formation is proposed based on structural characterizations. Nanowires with controlled segmented morphology are of great technological importance, because of the possibility to precisely control their substructure as a means of tuning their electrical, thermal, and optical properties. The concept we present in this work for electrodeposited platinum and track-etched polycarbonate membranes can be applied to other selected materials as well as templates and constitutes a general method to controlled nanostructuring and synthesis of shape controlled nanostructures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of segmented poly (L-lactide)-polyurethanes (PLA-PU) were synthesized by a two-step method, with oligo-poly(L-lactide) (PLA) as the soft segments and the reaction product of 2,4-toluene diisocyanate(TDI) and ethylene glycol(EG) as the hard segments. The shape memory properties of PLA-PUs were examined. The processed PLA-PUs could recover almost 100% to their original shape within 10 degrees C from the lowest recovery temperature. In the recovery process, the PLA-PUs showed a maximum contracting stress of shape change in the range of 1.5-4 MPa depending on the PLA segmental length and the hard-segmental content and higher than that of poly (e-caprolactone polyurethane) (PCL-PU). Besides, the influence of deforming and fixing temperatures on shape memory properties of PLA-PU was studied in detail. They could affect not only the recovery temperature but also the maximum contracting stress. The experiments of cell incubation were used to evaluate the biocompatibility of PLA-PU. The results show that the biocompatibility of PLA-PU is comparable to that of the pure PLA. This kind of polyurethane can be used as implanted medical devices with a shape memory property.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(epsilon-caprolactone)-based segmented polyurethanes (PCLUs) were prepared from poly(epsilon-caprolactone) diol, diisocyanates (DI), and 1,4-butanediol. The DIs used were 4,4'-diphenylmethane diisocyanate (MDI), 2,4-toluenediisocyanate (TDI), iso-phorone diisocyanate (IPDI), and hexamethylene diisocyanate (HDI). Differential scanning calorimetry, small-angle X-ray scattering, and dynamic mechanical analysis were employed to characterize the two-phase structures of all PCLUs. It was found that HDI- and MDI-based PCLUs had higher degree of microphase separation than did IPDI- and TDI-based PCLUs, which was primarily due to the crystallization of HDI- and MDI-based hard-segments. As a result, the HDI-based PCLU exhibited the highest recovery force up to 6 MPa and slowest stress relaxation with increasing temperature. Besides, it was found that the partial damage in hard-segment domains during the sample deformation was responsible for the incomplete shape-recovery of PCLUs after the first deformation, but the damage did not develop during the subsequent deformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The isothermal crystallization kinetics of poly(ethylene oxide) (PEO) block in two poly(ethylene terephthalate) (PET)-PEO segmented copolymers was studied with differential scanning calorimetry. The Avrami equation failed to describe the overall crystallization process, but a modified Avrami equation, the Q equation, did. The crystallizability of the PET block and the different lengths of the PEO block exerted strong influences on the crystallization process, the crystallinity, and time final morphology of the PEO block. The mechanism of nucleation and the growth dimension of the PEG block were different because of the crystallizability of time PET block and the compositional heterogeneity. The crystallization of the PEO block was physically constrained by the microstructure of time PET crystalline phase, which resulted in a lower crystallization rate. However, this influence became weak with the increase in the soft-block length. (C) 2000 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonisothermal crystallization behavior of ethylene terephthalate-ethylene oxide segmented copolymers has been studied by means of differential scanning calorimetry (DSC). The kinetics of ET-EO segmented copolymer under nonisothermal crystallization conditions has been analyzed by the Ozawa equation. During the crystallization of the high-T-m segments (PET), the low-T-m segments (PEO) act as a noncrystalline diluent, the crystallization behavior of PET obeys the Ozawa theory. When the PEO segments begin to crystallize, the PET phase is always partially solidified and the presence of the spherulitic microstructure of PET profoundly influences the crystallization behavior, which results in that the overall crystallization process does not obey the Ozawa equation. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonisothermal crystallization behavior of polyethylene oxide (PEO) in poly(ethylene terephthalate)poly(ethylene oxide) (PETPEO) segmented copolymer and PEO homopolymer has been studied by means of differential scanning calorimetry, as well as transmission electron microscope. The kinetics of PEO in copolymer and PEO homopolymer under nonisothermal crystallization condition has been analyzed by Ozawa equation. The results show that Ozawa equation only describes the crystallization behavior of PEO-6000 homopolymer successfully, but fails to describe the whole crystallization process of PEO in copolymer because the secondary crystallization in the later stage could not be neglected. Due to the constraint of PET segments imposed on the PEO segments, a distinct two stage of crystallization of PEO in copolymer has been investigated by using Avrami equation modified by Jeziorny to deal with the nonisothermal crystallization data. In the case of PEO-6000 homopolymer, good linear relation for the whole crystallization process is obtained owing to the secondary crystallization does not occur under our experimental condition. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonisothermal crystallization behavior of Ethylene Terephthalate-Ethylene Oxide (ET-EO) segmented copolymers has been studied with the use of differential scanning calorimetry (DSC). The kinetics of PEO in ET-EO segmented copolymer under nonisothermal crystallization conditions has been analyzed with the Ozawa equation. The results show that there is no agreement with Ozawa's theoretical predictions in the whole crystallization process owing to the constraint of ET segments imposed on the EO segments. A distinct two-crystallization process has been investigated by using the Avrami equation modified by Jeziorny to deal with the nonisothermal crystallization data. The value of the Avrami exponent n is independent of the length of soft segments. However, the crystallization rate is sensitive to the length of soft segments. The longer the soft segments, the faster the crystallization will be.