868 resultados para Segmentation 3D


Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVES: To determine the accuracy of automated vessel-segmentation software for vessel-diameter measurements based on three-dimensional contrast-enhanced magnetic resonance angiography (3D-MRA). METHOD: In 10 patients with high-grade carotid stenosis, automated measurements of both carotid arteries were obtained with 3D-MRA by two independent investigators and compared with manual measurements obtained by digital subtraction angiography (DSA) and 2D maximum-intensity projection (2D-MIP) based on MRA and duplex ultrasonography (US). In 42 patients undergoing carotid endarterectomy (CEA), intraoperative measurements (IOP) were compared with postoperative 3D-MRA and US. RESULTS: Mean interoperator variability was 8% for measurements by DSA and 11% by 2D-MIP, but there was no interoperator variability with the automated 3D-MRA analysis. Good correlations were found between DSA (standard of reference), manual 2D-MIP (rP=0.6) and automated 3D-MRA (rP=0.8). Excellent correlations were found between IOP, 3D-MRA (rP=0.93) and US (rP=0.83). CONCLUSION: Automated 3D-MRA-based vessel segmentation and quantification result in accurate measurements of extracerebral-vessel dimensions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: Proper delineation of ocular anatomy in 3D imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic Resonance Imaging (MRI) is nowadays utilized in clinical practice for the diagnosis confirmation and treatment planning of retinoblastoma in infants, where it serves as a source of information, complementary to the Fundus or Ultrasound imaging. Here we present a framework to fully automatically segment the eye anatomy in the MRI based on 3D Active Shape Models (ASM), we validate the results and present a proof of concept to automatically segment pathological eyes. Material and Methods: Manual and automatic segmentation were performed on 24 images of healthy children eyes (3.29±2.15 years). Imaging was performed using a 3T MRI scanner. The ASM comprises the lens, the vitreous humor, the sclera and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens and the optic nerve, then aligning the model and fitting it to the patient. We validated our segmentation method using a leave-one-out cross validation. The segmentation results were evaluated by measuring the overlap using the Dice Similarity Coefficient (DSC) and the mean distance error. Results: We obtained a DSC of 94.90±2.12% for the sclera and the cornea, 94.72±1.89% for the vitreous humor and 85.16±4.91% for the lens. The mean distance error was 0.26±0.09mm. The entire process took 14s on average per eye. Conclusion: We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor and the lens using MRI. We additionally present a proof of concept for fully automatically segmenting pathological eyes. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

INTRODUCTION Native-MR angiography (N-MRA) is considered an imaging alternative to contrast enhanced MR angiography (CE-MRA) for patients with renal insufficiency. Lower intraluminal contrast in N-MRA often leads to failure of the segmentation process in commercial algorithms. This study introduces an in-house 3D model-based segmentation approach used to compare both sequences by automatic 3D lumen segmentation, allowing for evaluation of differences of aortic lumen diameters as well as differences in length comparing both acquisition techniques at every possible location. METHODS AND MATERIALS Sixteen healthy volunteers underwent 1.5-T-MR Angiography (MRA). For each volunteer, two different MR sequences were performed, CE-MRA: gradient echo Turbo FLASH sequence and N-MRA: respiratory-and-cardiac-gated, T2-weighted 3D SSFP. Datasets were segmented using a 3D model-based ellipse-fitting approach with a single seed point placed manually above the celiac trunk. The segmented volumes were manually cropped from left subclavian artery to celiac trunk to avoid error due to side branches. Diameters, volumes and centerline length were computed for intraindividual comparison. For statistical analysis the Wilcoxon-Signed-Ranked-Test was used. RESULTS Average centerline length obtained based on N-MRA was 239.0±23.4 mm compared to 238.6±23.5 mm for CE-MRA without significant difference (P=0.877). Average maximum diameter obtained based on N-MRA was 25.7±3.3 mm compared to 24.1±3.2 mm for CE-MRA (P<0.001). In agreement with the difference in diameters, volumes obtained based on N-MRA (100.1±35.4 cm(3)) were consistently and significantly larger compared to CE-MRA (89.2±30.0 cm(3)) (P<0.001). CONCLUSIONS 3D morphometry shows highly similar centerline lengths for N-MRA and CE-MRA, but systematically higher diameters and volumes for N-MRA.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper proposed an automated 3D lumbar intervertebral disc (IVD) segmentation strategy from MRI data. Starting from two user supplied landmarks, the geometrical parameters of all lumbar vertebral bodies and intervertebral discs are automatically extracted from a mid-sagittal slice using a graphical model based approach. After that, a three-dimensional (3D) variable-radius soft tube model of the lumbar spine column is built to guide the 3D disc segmentation. The disc segmentation is achieved as a multi-kernel diffeomorphic registration between a 3D template of the disc and the observed MRI data. Experiments on 15 patient data sets showed the robustness and the accuracy of the proposed algorithm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we propose a new fully-automatic method for localizing and segmenting 3D intervertebral discs from MR images, where the two problems are solved in a unified data-driven regression and classification framework. We estimate the output (image displacements for localization, or fg/bg labels for segmentation) of image points by exploiting both training data and geometric constraints simultaneously. The problem is formulated in a unified objective function which is then solved globally and efficiently. We validate our method on MR images of 25 patients. Taking manually labeled data as the ground truth, our method achieves a mean localization error of 1.3 mm, a mean Dice metric of 87%, and a mean surface distance of 1.3 mm. Our method can be applied to other localization and segmentation tasks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper addresses the problem of fully-automatic localization and segmentation of 3D intervertebral discs (IVDs) from MR images. Our method contains two steps, where we first localize the center of each IVD, and then segment IVDs by classifying image pixels around each disc center as foreground (disc) or background. The disc localization is done by estimating the image displacements from a set of randomly sampled 3D image patches to the disc center. The image displacements are estimated by jointly optimizing the training and test displacement values in a data-driven way, where we take into consideration both the training data and the geometric constraint on the test image. After the disc centers are localized, we segment the discs by classifying image pixels around disc centers as background or foreground. The classification is done in a similar data-driven approach as we used for localization, but in this segmentation case we are aiming to estimate the foreground/background probability of each pixel instead of the image displacements. In addition, an extra neighborhood smooth constraint is introduced to enforce the local smoothness of the label field. Our method is validated on 3D T2-weighted turbo spin echo MR images of 35 patients from two different studies. Experiments show that compared to state of the art, our method achieves better or comparable results. Specifically, we achieve for localization a mean error of 1.6-2.0 mm, and for segmentation a mean Dice metric of 85%-88% and a mean surface distance of 1.3-1.4 mm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper proposed an automated three-dimensional (3D) lumbar intervertebral disc (IVD) segmentation strategy from Magnetic Resonance Imaging (MRI) data. Starting from two user supplied landmarks, the geometrical parameters of all lumbar vertebral bodies and intervertebral discs are automatically extracted from a mid-sagittal slice using a graphical model based template matching approach. Based on the estimated two-dimensional (2D) geometrical parameters, a 3D variable-radius soft tube model of the lumbar spine column is built by model fitting to the 3D data volume. Taking the geometrical information from the 3D lumbar spine column as constraints and segmentation initialization, the disc segmentation is achieved by a multi-kernel diffeomorphic registration between a 3D template of the disc and the observed MRI data. Experiments on 15 patient data sets showed the robustness and the accuracy of the proposed algorithm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Advanced liver surgery requires a precise pre-operative planning, where liver segmentation and remnant liver volume are key elements to avoid post-operative liver failure. In that context, level-set algorithms have achieved better results than others, especially with altered liver parenchyma or in cases with previous surgery. In order to improve functional liver parenchyma volume measurements, in this work we propose two strategies to enhance previous level-set algorithms: an optimal multi-resolution strategy with fine details correction and adaptive curvature, as well as an additional semiautomatic step imposing local curvature constraints. Results show more accurate segmentations, especially in elongated structures, detecting internal lesions and avoiding leakages to close structures

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The image by Computed Tomography is a non-invasive alternative for observing soil structures, mainly pore space. The pore space correspond in soil data to empty or free space in the sense that no material is present there but only fluids, the fluid transport depend of pore spaces in soil, for this reason is important identify the regions that correspond to pore zones. In this paper we present a methodology in order to detect pore space and solid soil based on the synergy of the image processing, pattern recognition and artificial intelligence. The mathematical morphology is an image processing technique used for the purpose of image enhancement. In order to find pixels groups with a similar gray level intensity, or more or less homogeneous groups, a novel image sub-segmentation based on a Possibilistic Fuzzy c-Means (PFCM) clustering algorithm was used. The Artificial Neural Networks (ANNs) are very efficient for demanding large scale and generic pattern recognition applications for this reason finally a classifier based on artificial neural network is applied in order to classify soil images in two classes, pore space and solid soil respectively.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

En este proyecto se ha desarrollado un código de MATLAB para el procesamiento de imágenes tomográficas 3D, de muestras de asfalto de carreteras en Polonia. Estas imágenes en 3D han sido tomadas por un equipo de investigación de la Universidad Tecnológica de Lodz (LUT). El objetivo de este proyecto es crear una herramienta que se pueda utilizar para estudiar las diferentes muestras de asfalto 3D y pueda servir para estudiar las pruebas de estrés que experimentan las muestras en el laboratorio. Con el objetivo final de encontrar soluciones a la degradación sufrida en las carreteras de Polonia, debido a diferentes causas, como son las condiciones meteorológicas. La degradación de las carreteras es un tema que se ha investigado desde hace muchos años, debido a la fuerte degradación causada por diferentes factores como son climáticos, la falta de mantenimiento o el tráfico excesivo en algunos casos. Es en Polonia, donde estos tres factores hacen que la composición de muchas carreteras se degrade rápidamente, sobre todo debido a las condiciones meteorológicas sufridas a lo largo del año, con temperaturas que van desde 30° C en verano a -20° C en invierno. Esto hace que la composición de las carreteras sufra mucho y el asfalto se levante, lo que aumenta los costos de mantenimiento y los accidentes de carretera. Este proyecto parte de la base de investigación que se lleva a cabo en la LUT, tratando de mejorar el análisis de las muestras de asfalto, por lo que se realizarán las pruebas de estrés y encontrar soluciones para mejorar el asfalto en las carreteras polacas. Esto disminuiría notablemente el costo de mantenimiento. A pesar de no entrar en aspectos muy técnicos sobre el asfalto y su composición, se ha necesitado realizar un estudio profundo sobre todas sus características, para crear un código capaz de obtener los mejores resultados. Por estas razones, se ha desarrollado en Matlab, los algoritmos que permiten el estudio de los especímenes 3D de asfalto. Se ha utilizado este software, ya que Matlab es una poderosa herramienta matemática que permite operar con matrices para realización de operaciones rápidamente, permitiendo desarrollar un código específico para el tratamiento y procesamiento de imágenes en 3D. Gracias a esta herramienta, estos algoritmos realizan procesos tales como, la segmentación de la imagen 3D, pre y post procesamiento de la imagen, filtrado o todo tipo de análisis microestructural de las muestras de asfalto que se están estudiando. El código presentado para la segmentación de las muestras de asfalto 3D es menos complejo en su diseño y desarrollo, debido a las herramientas de procesamiento de imágenes que incluye Matlab, que facilitan significativamente la tarea de programación, así como el método de segmentación utilizado. Respecto al código, este ha sido diseñado teniendo en cuenta el objetivo de facilitar el trabajo de análisis y estudio de las imágenes en 3D de las muestras de asfalto. Por lo tanto, el principal objetivo es el de crear una herramienta para el estudio de este código, por ello fue desarrollado para que pueda ser integrado en un entorno visual, de manera que sea más fácil y simple su utilización. Ese es el motivo por el cual todos estos algoritmos y funciones, que ha sido desarrolladas, se integrarán en una herramienta visual que se ha desarrollado con el GUIDE de Matlab. Esta herramienta ha sido creada en colaboración con Jorge Vega, y fue desarrollada en su proyecto final de carrera, cuyo título es: Segmentación microestructural de Imágenes en 3D de la muestra de asfalto utilizando Matlab. En esta herramienta se ha utilizado todo las funciones programadas en este proyecto, y tiene el objetivo de desarrollar una herramienta que permita crear un entorno gráfico intuitivo y de fácil uso para el estudio de las muestras de 3D de asfalto. Este proyecto se ha dividido en 4 capítulos, en un primer lugar estará la introducción, donde se presentarán los aspectos más importante que se va a componer el proyecto. En el segundo capítulo se presentarán todos los datos técnicos que se han tenido que estudiar para desarrollar la herramienta, entre los que cabe los tres temas más importantes que se han estudiado en este proyecto: materiales asfálticos, los principios de la tomografías 3D y el procesamiento de imágenes. Esta será la base para el tercer capítulo, que expondrá la metodología utilizada en la elaboración del código, con la explicación del entorno de trabajo utilizado en Matlab y todas las funciones de procesamiento de imágenes utilizadas. Además, se muestra todo el código desarrollado, así como una descripción teórica de los métodos utilizados para el pre-procesamiento y segmentación de las imagenes en 3D. En el capítulo 4, se mostrarán los resultados obtenidos en el estudio de una de las muestras de asfalto, y, finalmente, el último capítulo se basa en las conclusiones sobre el desarrollo de este proyecto. En este proyecto se ha llevado han realizado todos los puntos que se establecieron como punto de partida en el anteproyecto para crear la herramienta, a pesar de que se ha dejado para futuros proyectos nuevas posibilidades de este codigo, como por ejemplo, la detección automática de las diferentes regiones de una muestra de asfalto debido a su composición. Como se muestra en este proyecto, las técnicas de procesamiento de imágenes se utilizan cada vez más en multitud áreas, como pueden ser industriales o médicas. En consecuencia, este tipo de proyecto tiene multitud de posibilidades, y pudiendo ser la base para muchas nuevas aplicaciones que se puedan desarrollar en un futuro. Por último, se concluye que este proyecto ha contribuido a fortalecer las habilidades de programación, ampliando el conocimiento de Matlab y de la teoría de procesamiento de imágenes. Del mismo modo, este trabajo proporciona una base para el desarrollo de un proyecto más amplio cuyo alcance será una herramienta que puedas ser utilizada por el equipo de investigación de la Universidad Tecnológica de Lodz y en futuros proyectos. ABSTRACT In this project has been developed one code in MATLAB to process X-ray tomographic 3D images of asphalt specimens. These images 3D has been taken by a research team of the Lodz University of Technology (LUT). The aim of this project is to create a tool that can be used to study differents asphalt specimen and can be used to study them after stress tests undergoing the samples. With the final goal to find solutions to the degradation suffered roads in Poland due to differents causes, like weather conditions. The degradation of the roads is an issue that has been investigated many years ago, due to strong degradation suffered caused by various factors such as climate, poor maintenance or excessive traffic in some cases. It is in Poland where these three factors make the composition of many roads degrade rapidly, especially due to the weather conditions suffered along the year, with temperatures ranging from 30 o C in summer to -20 ° C in winter. This causes the roads suffers a lot and asphalt rises shortly after putting, increasing maintenance costs and road accident. This project part of the base that research is taking place at the LUT, in order to better analyze the asphalt specimens, they are tested for stress and find solutions to improve the asphalt on Polish roads. This would decrease remarkable maintenance cost. Although this project will not go into the technical aspect as asphalt and composition, but it has been required a deep study about all of its features, to create a code able to obtain the best results. For these reasons, there have been developed in Matlab, algorithms that allow the study of 3D specimens of asphalt. Matlab is a powerful mathematical tool, which allows arrays operate fastly, allowing to develop specific code for the treatment and processing of 3D images. Thus, these algorithms perform processes such as the multidimensional matrix sgementation, pre and post processing with the same filtering algorithms or microstructural analysis of asphalt specimen which being studied. All these algorithms and function that has been developed to be integrated into a visual tool which it be developed with the GUIDE of Matlab. This tool has been created in the project of Jorge Vega which name is: Microstructural segmentation of 3D images of asphalt specimen using Matlab engine. In this tool it has been used all the functions programmed in this project, and it has the aim to develop an easy and intuitive graphical environment for the study of 3D samples of asphalt. This project has been divided into 4 chapters plus the introduction, the second chapter introduces the state-of-the-art of the three of the most important topics that have been studied in this project: asphalt materials, principle of X-ray tomography and image processing. This will be the base for the third chapter, which will outline the methodology used in developing the code, explaining the working environment of Matlab and all the functions of processing images used. In addition, it will be shown all the developed code created, as well as a theoretical description of the methods used for preprocessing and 3D image segmentation. In Chapter 4 is shown the results obtained from the study of one of the specimens of asphalt, and finally the last chapter draws the conclusions regarding the development of this project.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Deformable models are a highly accurate and flexible approach to segmenting structures in medical images. The primary drawback of deformable models is that they are sensitive to initialisation, with accurate and robust results often requiring initialisation close to the true object in the image. Automatically obtaining a good initialisation is problematic for many structures in the body. The cartilages of the knee are a thin elastic material that cover the ends of the bone, absorbing shock and allowing smooth movement. The degeneration of these cartilages characterize the progression of osteoarthritis. The state of the art in the segmentation of the cartilage are 2D semi-automated algorithms. These algorithms require significant time and supervison by a clinical expert, so the development of an automatic segmentation algorithm for the cartilages is an important clinical goal. In this paper we present an approach towards this goal that allows us to automatically providing a good initialisation for deformable models of the patella cartilage, by utilising the strong spatial relationship of the cartilage to the underlying bone.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents an automated segmentation approach for MR images of the knee bones. The bones are the first stage of a segmentation system for the knee, primarily aimed at the automated segmentation of the cartilages. The segmentation is performed using 3D active shape models (ASM), which are initialized using an affine registration to an atlas. The 3D ASMs of the bones are created automatically using a point distribution model optimization scheme. The accuracy and robustness of the segmentation approach was experimentally validated using an MR database of fat suppressed spoiled gradient recall images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An automated method for extracting brain volumes from three commonly acquired three-dimensional (3D) MR images (proton density, T1 weighted, and T2-weighted) of the human head is described. The procedure is divided into four levels: preprocessing, segmentation, scalp removal, and postprocessing. A user-provided reference point is the sole operator-dependent input required, The method's parameters were first optimized and then fixed and applied to 30 repeat data sets from 15 normal older adult subjects to investigate its reproducibility. Percent differences between total brain volumes (TBVs) for the subjects' repeated data sets ranged from .5% to 2.2%. We conclude that the method is both robust and reproducible and has the potential for wide application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While fluoroscopy is still the most widely used imaging modality to guide cardiac interventions, the fusion of pre-operative Magnetic Resonance Imaging (MRI) with real-time intra-operative ultrasound (US) is rapidly gaining clinical acceptance as a viable, radiation-free alternative. In order to improve the detection of the left ventricular (LV) surface in 4D ultrasound, we propose to take advantage of the pre-operative MRI scans to extract a realistic geometrical model representing the patients cardiac anatomy. This could serve as prior information in the interventional setting, allowing to increase the accuracy of the anatomy extraction step in US data. We have made use of a real-time 3D segmentation framework used in the recent past to solve the LV segmentation problem in MR and US data independently and we take advantage of this common link to introduce the prior information as a soft penalty term in the ultrasound segmentation algorithm. We tested the proposed algorithm in a clinical dataset of 38 patients undergoing both MR and US scans. The introduction of the personalized shape prior improves the accuracy and robustness of the LV segmentation, as supported by the error reduction when compared to core lab manual segmentation of the same US sequences.