1000 resultados para Sciences-Belorussia
Resumo:
This study examines teachers’ conceptions of essential knowledge in the humanities and social sciences, commonly referred to as "social education", in the middle years of schooling. Social education has long been a highly contested area of the curriculum in Australia. In Queensland, social education comprises the integrated learning area of Studies of Society and Environment (SOSE). However, the new Australian Curriculum marks a return to discipline-based study of history and geography. This phenomenographic study addresses a perceived lack of understanding in the current research literature in Australia of the nature of middle school teachers’ professional knowledge for teaching the social sciences. Teachers are conceptualised in this study as curriculum makers in the classroom and, as such, their conceptions of essential knowledge are significant. Shulman’s (1986, 1987) theory of teachers’ knowledge forms the theoretical foundation of the study, which is contextualised in Federal and State education policies and the literature on the middle phase of schooling. Transcripts of interviews conducted with a group of thirty-one Queensland middle school teachers of SOSE were subjected to phenomenographic analysis, revealing seven qualitatively different categories of description. Essential aspects of knowledge for social education emerging from the study were: (1) discipline-based knowledge; (2) curriculum knowledge; (3) knowledge derived from teaching experience; (4) knowledge of middle years learners; (5) knowledge of integration; (6) knowledge of current affairs; and (7) knowledge invested in teacher identity. The three dimensions of variation that linked and differentiated the categories were: (1) content; (2) inquiry learning; and (3) teacher autonomy. These findings are presented as an outcome space where the categories are grouped as knowledge of the learning area, knowledge of contexts and knowledge of self as teacher. The results of the study suggest that social education teachers’ identity and knowledge of self are critical aspects of their knowledge as curriculum makers. The results illustrate that the professional and personal domains intersect, extending Shulman’s (1986, 1987) original theorisation of teachers’ knowledge into the personal arena. Further, middle years teachers’ conceptions of essential knowledge reveal a practice-based theorisation of knowledge for social education that fits the goals of middle schooling. The research concludes that attention to teacher identity in teacher education and in-service professional development has considerable potential to grow teachers’ knowledge in the social sciences and enhance their capacity for school-based curriculum leadership.
Resumo:
As a growing number of nations embark on a path to democracy, criminologists have become increasingly interested and engaged in the challenges, concerns, and questions connecting democracy with both crime and criminal justice. Rising levels of violence and street crime, white collar crime and corruption both in countries where democracy is securely in place and where it is struggling, have fuelled a deepening skepticism as to the capacity of democracy to deliver on its promise of security and justice for all citizens. What role does crime and criminal justice play in the future of democracy and for democratic political development on a global level? The editors of this special volume of The Annals realized the importance of collecting research from a broad spectrum of countries and covering a range of problems that affect citizens, politicians, and criminal justice officials. The articles here represent a solid balance between mature democracies like the U.S. and U.K. as well as emerging democracies around the globe – specifically in Latin America, Africa and Eastern Europe. They are based on large and small cross-national samples, regional comparisons, and case studies. Each contribution addresses a seminal question for the future of democratic political development across the globe. What is the role of criminal justice in the process of building democracy and instilling confidence in its institutions? Is there a role for unions in democratizing police forces? What is the impact of widespread disenfranchisement of felons on democratic citizenship and the life of democratic institutions? Under what circumstances do mature democracies adopt punitive sentencing regimes? Addressing sensitive topics such as relations between police and the Muslim communities of Western Europe in the wake of terrorist attacks, this volume also sheds light on the effects of terrorism on mature democracies under increasing pressure to provide security for their citizens. By taking a broad vantage point, this collection of research delves into complex topics such as the relationship between the process of democratization and violent crime waves; the impact of rising crime rates on newly established as well as secure democracies; how crime may endanger the transition to democracy; and how existing practices of criminal justice in mature democracies affect their core values and institutions. The collection of these insightful articles not only begins to fill a gap in criminological research but also addresses issues of critical interest to political scientists as well as other social and behavioral scientists and scholars. Taking a fresh approach to the intersection of crime, criminal justice, and democracy, this volume of The Annals is a must-read for criminologists and political scientists and provides a solid foundation for further interdisciplinary research.
Resumo:
Since 2004, the Australian Learning and Teaching Council (ALTC) and its predecessor, the Carrick Institute for Learning and Teaching in Higher Education, have funded numerous teaching and educational research-based projects in the Mathematical Sciences. In light of the Commonwealth Government’s decision to close the ALTC in 2011, it is appropriate to take account of the ALTCs input into the Mathe- matical Sciences in higher education. Here we present an overview of ALTC projects in the Mathematical Sciences, as well as report on the contributions they have made to the Discipline.
Resumo:
This paper addresses the professional development of Kuwaiti teachers in the use of concept maps to teach Family and Consumer Science. A key aim of the study was to evaluate the degree to which the use of concept maps would influence the way Kuwaiti teachers approach and teach Family and Consumer Studies (FCS) subjects and the degree to which concept maps empower students to critically identify and express their knowledge of the subject being taught. A case study methodology was adopted to follow the implementation of lessons using concept maps by four teachers of middle years. An analysis of the data revealed the positive impact that student-centred teaching tools can have on the reformation of traditional teaching environments. For all teachers, the primary strengths of using concept maps were the ability to generate student interest, to motivate student participation and to enhance student understanding of content. Although a case study design may limit the generalisation and comparative value of the study, the findings of this study remain important to the planning of future professional development programs and the use of concept maps within Kuwait’s FCS curriculum area.
Resumo:
While much of the control and many of the activities found in today’s classrooms have been placed in the hands of the learners and learning has become inquiry-based, there remains a need for teachers to use teaching tools that would facilitate this student-centered teaching process. This article identifies the K-W-L Chart as one such tool and follows a case study of four Kuwaiti ‘Family and Consumer Sciences’ teaching / learning events to evaluate their ability to enhance the learning outcomes of eight students. The research was designed from a qualitative, multi-tiered design approach and was assessed through a constant comparative method of data analysis of interview responses, classroom observations and worksheet-assessments. The results showed that the use of K-W-L Charts influenced the teachers and learners toward a more inquiry-based approach and facilitated a more student-centered and collaborative learning environment, raising the level of interest and the amount of personal input given by the students.
Resumo:
Educational reforms currently being enacted in Kuwaiti Family and Consumer Sciences (FCS) in response to contemporary demands for increased student-centred teaching and learning are challenging for FCS teachers due to their limited experience with student-centred learning tools such as Graphic Organisers (GOs). To adopt these reforms, Kuwaiti teachers require a better understanding of and competency in promoting cognitive learning processes that will maximise student-centred learning approaches. This study followed the experiences of four Grade 6 FCS Kuwaiti teachers as they undertook a Professional Development (PD) program specifically designed to advance their understanding of the use of GOs and then as they implemented what they had learned in their Grade 6 FCS classroom. The PD program developed for this study was informed by Nasseh.s competency PD model as well as Piaget and Ausubel.s cognitive theories. This model enabled an assessment and evaluation of the development of the teachers. competencies as an outcome of the PD program in terms of the adoption of GOs, in particular, and their capacity to use GOs to engage students in personalised, in-depth, learning through critical thinking and understanding. The research revealed that the PD program was influential in reforming the teachers. learning, understanding of and competency in, cognitive and visual theories of learning, so that they facilitated student-centred teaching and learning processes that enabled students to adopt and adapt GOs in constructivist learning. The implementation of five GOs - Flow Chart, Concept Maps, K-W-L Chart, Fishbone Diagram and Venn Diagram - as learning tools in classrooms was investigated to find if changes in pedagogical approach for supporting conceptual learning through cognitive information processing would reduce the cognitive work load of students and produce better learning approaches. The study as evidenced by the participant teachers. responses and classroom observations, showed a marked increase in student interest, participation, critical thought, problem solving skills, as a result of using GOs, compared to using traditional teaching and learning methods. A theoretical model was developed from the study based on the premise that teachers. knowledge of the subject, pedagogy and student learning precede the implementation of student-centred learning reform, that it plays an important role in the implementation of student-centred learning and that it brings about a change in teaching practice. The model affirmed that observed change in teaching-practice included aspects of teachers. beliefs, as well as confidence and effect on workplace and on student learning, including engagement, understanding, critical thinking and problem solving. The model assumed that change in teaching practice is inseparable from teachers. lifelong PD needs related to knowledge, understanding, skills and competency. These findings produced a set of preliminary guidelines for establishing student-centred constructivist strategies in Kuwaiti education while retaining Kuwait.s cultural uniqueness.
Resumo:
We present a mini-review of the development and contemporary applications of diffusion-sensitive nuclear magnetic resonance (NMR) techniques in biomedical sciences. Molecular diffusion is a fundamental physical phenomenon present in all biological systems. Due to the connection between experimentally measured diffusion metrics and the microscopic environment sensed by the diffusing molecules, diffusion measurements can be used for characterisation of molecular size, molecular binding and association, and the morphology of biological tissues. The emergence of magnetic resonance was instrumental to the development of biomedical applications of diffusion. We discuss the fundamental physical principles of diffusion NMR spectroscopy and diffusion MR imaging. The emphasis is placed on conceptual understanding, historical evolution and practical applications rather than complex technical details. Mathematical description of diffusion is presented to the extent that it is required for the basic understanding of the concepts. We present a wide range of spectroscopic and imaging applications of diffusion magnetic resonance, including colloidal drug delivery vehicles; protein association; characterisation of cell morphology; neural fibre tractography; cardiac imaging; and the imaging of load-bearing connective tissues. This paper is intended as an accessible introduction into the exciting and growing field of diffusion magnetic resonance.
Resumo:
The Earth and its peoples are facing great challenges. As a species, humans are over-consuming the Earth’s resources and compromising the capacity of both natural and social systems to function in healthy and sustainable ways. Education at all levels and in all contexts, has a key role in helping societies move to more sustainable ways of living. Two areas in need of catch-up in relation to Education for Sustainable Development (ESD) are early childhood education and teacher education. Another area of challenge for ESD is the way it is currently oriented. To date, a great deal of emphasis has been placed on scientific and technological solutions to sustainability issues. This has led to an emphasis on STEM education as education’s main way of addressing sustainability. However, in this paper it is argued that sustainably is primarily a social issue that requires interdisciplinary education approaches. STEM approaches to ESD - emphasising knowledge construction and problem-solving - cannot, on their own, deal effectively with attitudes, values and actions towards more sustainable ways of living. In China and Australia, there are already policies, frameworks, guidelines and initiatives, such as Green Schools and Sustainable Schools that support such forms of ESD. STEM educators need to reach out to social scientists and social educators in order to more fully engage with activist and collaborative educational responses that equip learners with the knowledge, dispositions and capacities to ‘make a difference’.
Resumo:
Measuring Earth material behaviour on time scales of millions of years transcends our current capability in the laboratory. We review an alternative path considering multiscale and multiphysics approaches with quantitative structure-property relationships. This approach allows a sound basis to incorporate physical principles such as chemistry, thermodynamics, diffusion and geometry-energy relations into simulations and data assimilation on the vast range of length and time scales encountered in the Earth. We identify key length scales for Earth systems processes and find a substantial scale separation between chemical, hydrous and thermal diffusion. We propose that this allows a simplified two-scale analysis where the outputs from the micro-scale model can be used as inputs for meso-scale simulations, which then in turn becomes the micro-model for the next scale up. We present two fundamental theoretical approaches to link the scales through asymptotic homogenisation from a macroscopic thermodynamic view and percolation renormalisation from a microscopic, statistical mechanics view.
Resumo:
The ability to understand and predict how thermal, hydrological,mechanical and chemical (THMC) processes interact is fundamental to many research initiatives and industrial applications. We present (1) a new Thermal– Hydrological–Mechanical–Chemical (THMC) coupling formulation, based on non-equilibrium thermodynamics; (2) show how THMC feedback is incorporated in the thermodynamic approach; (3) suggest a unifying thermodynamic framework for multi-scaling; and (4) formulate a new rationale for assessing upper and lower bounds of dissipation for THMC processes. The technique is based on deducing time and length scales suitable for separating processes using a macroscopic finite time thermodynamic approach. We show that if the time and length scales are suitably chosen, the calculation of entropic bounds can be used to describe three different types of material and process uncertainties: geometric uncertainties,stemming from the microstructure; process uncertainty, stemming from the correct derivation of the constitutive behavior; and uncertainties in time evolution, stemming from the path dependence of the time integration of the irreversible entropy production. Although the approach is specifically formulated here for THMC coupling we suggest that it has a much broader applicability. In a general sense it consists of finding the entropic bounds of the dissipation defined by the product of thermodynamic force times thermodynamic flux which in material sciences corresponds to generalized stress and generalized strain rates, respectively.
Resumo:
Geoscientists are confronted with the challenge of assessing nonlinear phenomena that result from multiphysics coupling across multiple scales from the quantum level to the scale of the earth and from femtoseconds to the 4.5 Ga of history of our planet. We neglect in this review electromagnetic modelling of the processes in the Earth’s core, and focus on four types of couplings that underpin fundamental instabilities in the Earth. These are thermal (T), hydraulic (H), mechanical (M) and chemical (C) processes which are driven and controlled by the transfer of heat to the Earth’s surface. Instabilities appear as faults, folds, compaction bands, shear/fault zones, plate boundaries and convective patterns. Convective patterns emerge from buoyancy overcoming viscous drag at a critical Rayleigh number. All other processes emerge from non-conservative thermodynamic forces with a critical critical dissipative source term, which can be characterised by the modified Gruntfest number Gr. These dissipative processes reach a quasi-steady state when, at maximum dissipation, THMC diffusion (Fourier, Darcy, Biot, Fick) balance the source term. The emerging steady state dissipative patterns are defined by the respective diffusion length scales. These length scales provide a fundamental thermodynamic yardstick for measuring instabilities in the Earth. The implementation of a fully coupled THMC multiscale theoretical framework into an applied workflow is still in its early stages. This is largely owing to the four fundamentally different lengths of the THMC diffusion yardsticks spanning micro-metre to tens of kilometres compounded by the additional necessity to consider microstructure information in the formulation of enriched continua for THMC feedback simulations (i.e., micro-structure enriched continuum formulation). Another challenge is to consider the important factor time which implies that the geomaterial often is very far away from initial yield and flowing on a time scale that cannot be accessed in the laboratory. This leads to the requirement of adopting a thermodynamic framework in conjunction with flow theories of plasticity. This framework allows, unlike consistency plasticity, the description of both solid mechanical and fluid dynamic instabilities. In the applications we show the similarity of THMC feedback patterns across scales such as brittle and ductile folds and faults. A particular interesting case is discussed in detail, where out of the fluid dynamic solution, ductile compaction bands appear which are akin and can be confused with their brittle siblings. The main difference is that they require the factor time and also a much lower driving forces to emerge. These low stress solutions cannot be obtained on short laboratory time scales and they are therefore much more likely to appear in nature than in the laboratory. We finish with a multiscale description of a seminal structure in the Swiss Alps, the Glarus thrust, which puzzled geologists for more than 100 years. Along the Glarus thrust, a km-scale package of rocks (nappe) has been pushed 40 km over its footwall as a solid rock body. The thrust itself is a m-wide ductile shear zone, while in turn the centre of the thrust shows a mm-cm wide central slip zone experiencing periodic extreme deformation akin to a stick-slip event. The m-wide creeping zone is consistent with the THM feedback length scale of solid mechanics, while the ultralocalised central slip zones is most likely a fluid dynamic instability.
Resumo:
Regional and remote communities in tropical Queensland are among Australia’s most vulnerable in the face of climate change. At the same time, these socially and economically vulnerable regions house some of Australia’s most significant biodiversity values. Past approaches to terrestrial biodiversity management have focused on tackling biophysical interventions through the use of biophysical knowledge. An equally important focus should be placed on building regional-scale community resilience if some of the worst biodiversity impacts of climate change are to be avoided or mitigated. Despite its critical need, more systemic or holistic approaches to natural resource management have been rarely trialed and tested in a structured way. Currently, most strategic interventions in improving regional community resilience are ad hoc, not theory-based and short term. Past planning approaches have not been durable, nor have they been well informed by clear indicators. Research into indicators for community resilience has been poorly integrated within adaptive planning and management cycles. This project has aimed to resolve this problem by: * Reviewing the community and social resilience and adaptive planning literature to reconceptualise an improved framework for applying community resilience concepts; * Harvesting and extending work undertaken in MTSRF Phase 1 to identifying the learnings emerging from past MTSRF research; * Distilling these findings to identify new theoretical and practical approaches to the application of community resilience in natural resource use and management; * Reconsidering the potential interplay between a region’s biophysical and social planning processes, with a focus on exploring spatial tools to communicate climate change risk and its consequent environmental, economic and social impacts, and; * Trialling new approaches to indicator development and adaptive planning to improve community resilience, using a sub-regional pilot in the Wet Tropics. In doing so, we also looked at ways to improve the use and application of relevant spatial information. Our theoretical review drew upon the community development, psychology and emergency management literature to better frame the concept of community resilience relative to aligned concepts of social resilience, vulnerability and adaptive capacity. Firstly, we consider community resilience as a concept that can be considered at a range of scales (e.g. regional, locality, communities of interest, etc.). We also consider that overall resilience at higher scales will be influenced by resilience levels at lesser scales (inclusive of the resilience of constituent institutions, families and individuals). We illustrate that, at any scale, resilience and vulnerability are not necessarily polar opposites, and that some understanding of vulnerability is important in determining resilience. We position social resilience (a concept focused on the social characteristics of communities and individuals) as an important attribute of community resilience, but one that needs to be considered alongside economic, natural resource, capacity-based and governance attributes. The findings from the review of theory and MTSRF Phase 1 projects were synthesized and refined by the wider project team. Five predominant themes were distilled from this literature, research review and an expert analysis. They include the findings that: 1. Indicators have most value within an integrated and adaptive planning context, requiring an active co-research relationship between community resilience planners, managers and researchers if real change is to be secured; 2. Indicators of community resilience form the basis for planning for social assets and the resilience of social assets is directly related the longer term resilience of natural assets. This encourages and indeed requires the explicit development and integration of social planning within a broader natural resource planning and management framework; 3. Past indicator research and application has not provided a broad picture of the key attributes of community resilience and there have been many attempts to elicit lists of “perfect” indicators that may never be useful within the time and resource limitations of real world regional planning and management. We consider that modeling resilience for proactive planning and prediction purposes requires the consideration of simple but integrated clusters of attributes; 4. Depending on time and resources available for planning and management, the combined use of well suited indicators and/or other lesser “lines of evidence” is more flexible than the pursuit of perfect indicators, and that; 5. Index-based, collaborative and participatory approaches need to be applied to the development, refinement and reporting of indicators over longer time frames. We trialed the practical application of these concepts via the establishment of a collaborative regional alliance of planners and managers involved in the development of climate change adaptation strategies across tropical Queensland (the Gulf, Wet Tropics, Cape York and Torres Strait sub-regions). A focus on the Wet Tropics as a pilot sub-region enabled other Far North Queensland sub-region’s to participate and explore the potential extension of this approach. The pilot activities included: * Further exploring ways to innovatively communicate the region’s likely climate change scenarios and possible environmental, economic and social impacts. We particularly looked at using spatial tools to overlay climate change risks to geographic communities and social vulnerabilities within those communities; * Developing a cohesive first pass of a State of the Region-style approach to reporting community resilience, inclusive of regional economic viability, community vitality, capacitybased and governance attributes. This framework integrated a literature review, expert (academic and community) and alliance-based contributions; and * Early consideration of critical strategies that need to be included in unfolding regional planning activities with Far North Queensland. The pilot assessment finds that rural, indigenous and some urban populations in the Wet Tropics are highly vulnerable and sensitive to climate change and may require substantial support to adapt and become more resilient. This assessment finds that under current conditions (i.e. if significant adaptation actions are not taken) the Wet Tropics as a whole may be seriously impacted by the most significant features of climate change and extreme climatic events. Without early and substantive action, this could result in declining social and economic wellbeing and natural resource health. Of the four attributes we consider important to understanding community resilience, the Wet Tropics region is particularly vulnerable in two areas; specifically its economic vitality and knowledge, aspirations and capacity. The third and fourth attributes, community vitality and institutional governance are relatively resilient but are vulnerable in some key respects. In regard to all four of these attributes, however, there is some emerging capacity to manage the possible shocks that may be associated with the impacts of climate change and extreme climatic events. This capacity needs to be carefully fostered and further developed to achieve broader community resilience outcomes. There is an immediate need to build individual, household, community and sectoral resilience across all four attribute groups to enable populations and communities in the Wet Tropics region to adapt in the face of climate change. Preliminary strategies of importance to improve regional community resilience have been identified. These emerging strategies also have been integrated into the emerging Regional Development Australia Roadmap, and this will ensure that effective implementation will be progressed and coordinated. They will also inform emerging strategy development to secure implementation of the FNQ 2031 Regional Plan. Of most significance in our view, this project has taken a co-research approach from the outset with explicit and direct importance and influence within the region’s formal planning and management arrangements. As such, the research: * Now forms the foundations of the first attempt at “Social Asset” planning within the Wet Tropics Regional NRM Plan review; * Is assisting Local government at regional scale to consider aspects of climate change adaptation in emerging planning scheme/community planning processes; * Has partnered the State government (via the Department of Infrastructure and Planning and Regional Managers Coordination Network Chair) in progressing the Climate Change adaptation agenda set down within the FNQ 2031 Regional Plan; * Is informing new approaches to report on community resilience within the GBRMPA Outlook reporting framework; and * Now forms the foundation for the region’s wider climate change adaptation priorities in the Regional Roadmap developed by Regional Development Australia. Through the auspices of Regional Development Australia, the outcomes of the research will now inform emerging negotiations concerning a wider package of climate change adaptation priorities with State and Federal governments. Next stage research priorities are also being developed to enable an ongoing alliance between researchers and the region’s climate change response.