933 resultados para Scale-free network


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Australia more than 300 vertebrates, including 43 insectivorous bat species, depend on hollows in habitat trees for shelter, with many species using a network of multiple trees as roosts, We used roost-switching data on white-striped freetail bats (Tadarida australis; Microchiroptera: Molossidae) to construct a network representation of day roosts in suburban Brisbane, Australia. Bats were caught from a communal roost tree with a roosting group of several hundred individuals and released with transmitters. Each roost used by the bats represented a node in the network, and the movements of bats between roosts formed the links between nodes. Despite differences in gender and reproductive stages, the bats exhibited the same behavior throughout three radiotelemetry periods and over 500 bat days of radio tracking: each roosted in separate roosts, switched roosts very infrequently, and associated with other bats only at the communal roost This network resembled a scale-free network in which the distribution of the number of links from each roost followed a power law. Despite being spread over a large geographic area (> 200 km(2)), each roost was connected to others by less than three links. One roost (the hub or communal roost) defined the architecture of the network because it had the most links. That the network showed scale-free properties has profound implications for the management of the habitat trees of this roosting group. Scale-free networks provide high tolerance against stochastic events such as random roost removals but are susceptible to the selective removal of hub nodes. Network analysis is a useful tool for understanding the structural organization of habitat tree usage and allows the informed judgment of the relative importance of individual trees and hence the derivation of appropriate management decisions, Conservation planners and managers should emphasize the differential importance of habitat trees and think of them as being analogous to vital service centers in human societies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

16 pages, 22 figures

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highlights • We study diel behavioural differences in activity patterns in bigeye tuna. • Daytime activity patterns showed scale free movements consistent with searching. • Night-time activity showed simpler movements indicative of rich patch exploitation. • The results confirm predictions of the Lévy foraging hypothesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highlights • We study diel behavioural differences in activity patterns in bigeye tuna. • Daytime activity patterns showed scale free movements consistent with searching. • Night-time activity showed simpler movements indicative of rich patch exploitation. • The results confirm predictions of the Lévy foraging hypothesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

International audience

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter argues that evolutionary economics should be founded upon complex systems theory rather than neo-Darwinian analogies concerning natural selection, which focus on supply side considerations and competition amongst firms and technologies. It suggests that conceptions such as production and consumption functions should be replaced by network representations, in which the preferences or, more correctly, the aspirations of consumers are fundamental and, as such, the primary drivers of economic growth. Technological innovation is viewed as a process that is intermediate between these aspirational networks, and the organizational networks in which goods and services are produced. Consumer knowledge becomes at least as important as producer knowledge in determining how economic value is generated. It becomes clear that the stability afforded by connective systems of rules is essential for economic flexibility to exist, but that too many rules result in inert and structurally unstable states. In contrast, too few rules result in a more stable state, but at a low level of ordered complexity. Economic evolution from this perspective is explored using random and scale free network representations of complex systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work consists of a theoretical part and an experimental one. The first part provides a simple treatment of the celebrated von Neumann minimax theorem as formulated by Nikaid6 and Sion. It also discusses its relationships with fundamental theorems of convex analysis. The second part is about externality in sponsored search auctions. It shows that in these auctions, advertisers have externality effects on each other which influence their bidding behavior. It proposes Hal R.Varian model and shows how adding externality to this model will affect its properties. In order to have a better understanding of the interaction among advertisers in on-line auctions, it studies the structure of the Google advertisements networ.k and shows that it is a small-world scale-free network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The community of lawyers and their clients form a scale-free bipartite network that develops naturally as the outcome of the recommendation process through which lawyers form their client base. This process is an example of preferential attachment where lawyers with more clients are more likely to be recommended to new clients. Consumer litigation is an important market for lawyers. In large consumer societies, there always a signi cant amount of consumption disputes that escalate to court. In this paper we analyze a dataset of thousands of lawsuits, reconstructing the lawyer-client network embedded in the data. Analyzing the degree distribution of this network we noticed that it follows that of a scale-free network built by preferential attachment, but for a few lawyers with much larger client base than could be expected by preferential attachment. Incidentally, most of these also gured on a list put together by the judiciary of Lawyers which openly advertised the bene ts of consumer litigation. According to the code of ethics of their profession, lawyers should not stimulate clients into litigation, but it is not strictly illegal. From a network formation point of view, this stimulation can be seen as a separate growth mechanism than preferential attachment alone. In this paper we nd that this composite growth can be detected by a simple statistical test, as simulations show that lawyers which use both mechanisms quickly become the \Dragon-Kings" of the distribution of the number of clients per lawyer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we study a connection between a non-Gaussian statistics, the Kaniadakis statistics, and Complex Networks. We show that the degree distribution P(k)of a scale free-network, can be calculated using a maximization of information entropy in the context of non-gaussian statistics. As an example, a numerical analysis based on the preferential attachment growth model is discussed, as well as a numerical behavior of the Kaniadakis and Tsallis degree distribution is compared. We also analyze the diffusive epidemic process (DEP) on a regular lattice one-dimensional. The model is composed of A (healthy) and B (sick) species that independently diffusive on lattice with diffusion rates DA and DB for which the probabilistic dynamical rule A + B → 2B and B → A. This model belongs to the category of non-equilibrium systems with an absorbing state and a phase transition between active an inactive states. We investigate the critical behavior of the DEP using an auto-adaptive algorithm to find critical points: the method of automatic searching for critical points (MASCP). We compare our results with the literature and we find that the MASCP successfully finds the critical exponents 1/ѵ and 1/zѵ in all the cases DA =DB, DA DB. The simulations show that the DEP has the same critical exponents as are expected from field-theoretical arguments. Moreover, we find that, contrary to a renormalization group prediction, the system does not show a discontinuous phase transition in the regime o DA >DB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we analyse the implications of using a power law distribution of vertice's quality in the growth dynamics of a network studied by Bianconi anel Barabási. In particular, we start studying the random networks which characterize or are related to some real situations, for instance the tide movement. In this context of complex networks, we investigate several real networks, as well as we define some important concepts in the network studies. Furthermore, we present the first scale-free network model, which was proposed by Barabási et al., and a modified model studied by Bianconi and Barabási, where now the preferential attachment incorporates the different ability (fitness) of the nodes to compete for links. At the end, our results, discussions and conclusions are presented

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biological processes are complex and possess emergent properties that can not be explained or predict by reductionism methods. To overcome the limitations of reductionism, researchers have been used a group of methods known as systems biology, a new interdisciplinary eld of study aiming to understand the non-linear interactions among components embedded in biological processes. These interactions can be represented by a mathematical object called graph or network, where the elements are represented by nodes and the interactions by edges that link pair of nodes. The networks can be classi- ed according to their topologies: if node degrees follow a Poisson distribution in a given network, i.e. most nodes have approximately the same number of links, this is a random network; if node degrees follow a power-law distribution in a given network, i.e. small number of high-degree nodes and high number of low-degree nodes, this is a scale-free network. Moreover, networks can be classi ed as hierarchical or non-hierarchical. In this study, we analised Escherichia coli and Saccharomyces cerevisiae integrated molecular networks, which have protein-protein interaction, metabolic and transcriptional regulation interactions. By using computational methods, such as MathematicaR , and data collected from public databases, we calculated four topological parameters: the degree distribution P(k), the clustering coe cient C(k), the closeness centrality CC(k) and the betweenness centrality CB(k). P(k) is a function that calculates the total number of nodes with k degree connection and is used to classify the network as random or scale-free. C(k) shows if a network is hierarchical, i.e. if the clusterization coe cient depends on node degree. CC(k) is an indicator of how much a node it is in the lesse way among others some nodes of the network and the CB(k) is a pointer of how a particular node is among several ...(Complete abstract click electronic access below)