951 resultados para SYNTHASE-DEFICIENT MICE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study defines a critical role for Btk in regulating TLR4-induced crosstalk between antigen presenting cells (APCs) and natural killer (NK) cells. Reduced levels of IL-12, IL-18 and IFN-? were observed in Btk-deficient mice and ex vivo generated macrophages and dendritic cells (DCs) following acute LPS administration, whilst enhanced IL-10 production was observed. In addition, upregulation of activation markers and antigen presentation molecules on APCs was also impaired in the absence of Btk. APCs, by virtue of their ability to produce IL-12 and IL-18, are strong inducers of NK-derived IFN-?. Co-culture experiments demonstrate that Btk-deficient DCs were unable to drive wild-type or Btk-deficient NK cells to induce IFN-? production, whereas these responses could be restored by exogenous administration of IL-12 and IL-18. Thus Btk is a critical regulator of APC-induced NK cell activation by virtue of its ability to regulate IL-12 and IL-18 production in response to acute LPS administration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE:
To investigate the role of the Fractalkine receptor CX3CR1 pathway in oxidative insults-mediated retinal degeneration and immune activation.
METHODS:
A prooxidant, paraquat (0.75 µM) was injected into the vitreous of C57BL/6J, CX3CR1(gpf/+), and CX3CR1(gfp/gfp) mice. Retinal lesions were investigated clinically by topic endoscopic fundus imaging and fluorescence angiography, and pathologically by light- and electron microscopy. Retinal immune gene expression was determined by real-time RT-PCR. Microglial activation and immune cell infiltration were examined by confocal microscopy of retinal flatmounts.
RESULTS:
Intravitreal injection of paraquat (0.75 µM) resulted in acute retinal capillary nonperfusion within 2 days, which improved from 4 days to 4 weeks postinjection (p.i.). Panretinal degeneration was observed at 4 days p.i. and progressed further at 4 weeks p.i. In the absence of CX3CR1, retinal degeneration was exaggerated and was accompanied by increased TNF-a, iNOS, IL-1ß, Ccl2, and Casp-1 gene expression. Confocal microscopy of retinal flatmounts revealed microglial activation and CD44(+)MHC-II(+) monocyte and GR1(+) neutrophil infiltration in paraquat-injected eyes. The number of activated microglia and infiltrating leukocytes was significantly higher in CX3CR1(gfp/gfp) mice than in CX3CR1(gfp/+) mice.
CONCLUSIONS:
Our results suggest that the CX3CR1 signaling pathway may play an important role in controlling retinal inflammation under oxidative and ischemia/reperfusion conditions. In the absence of CX3CR1, uncontrolled retinal inflammation results in exaggerated retinal degeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations in several classes of embryonically-expressed transcription factor genes are associated with behavioral disorders and epilepsies. However, there is little known about how such genetic and neurodevelopmental defects lead to brain dysfunction. Here we present the characterization of an epilepsy syndrome caused by the absence of the transcription factor SOX1 in mice. In vivo electroencephalographic recordings from SOX1 mutants established a correlation between behavioral changes and cortical output that was consistent with a seizure origin in the limbic forebrain. In vitro intracellular recordings from three major forebrain regions, neocortex, hippocampus and olfactory (piriform) cortex (OC) showed that only the OC exhibits abnormal enhanced synaptic excitability and spontaneous epileptiform discharges. Furthermore, the hyperexcitability of the OC neurons was present in mutants prior to the onset of seizures but was completely absent from both the hippocampus and neocortex of the same animals. The local inhibitory GABAergic neurotransmission remained normal in the OC of SOX1-deficient brains, but there was a severe developmental deficit of OC postsynaptic target neurons, mainly GABAergic projection neurons within the olfactory tubercle and the nucleus accumbens shell. Our data show that SOX1 is essential for ventral telencephalic development and suggest that the neurodevelopmental defect disrupts local neuronal circuits leading to epilepsy in the SOX1-deficient mice

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brain dystrophin is enriched in the postsynaptic densities of pyramidal neurons specialized regions of the subsynaptic cytoskeletal network, which are critical for synaptic transmission and plasticity. Lack of dystrophin in brain structures have been involved with impaired cognitive functions. The brain-derived neurotrophic factor (BDNF) is a regulator of neuronal survival, fast synaptic transmission, and activity-dependent synaptic plasticity. The present study investigated BDNF protein levels by Elisa analysis in prefrontal cortex, cerebellum, hippocampus, striatum and cortex tissues from male dystrophic mdx (n = 5) and normal C57BL10 mouse (n = 5). We observed that the mdx mouse display diminution in BDNF levels in striatum (t = 6.073; df = 6; p = 0.001), while a tendency of decrease in BDNF levels was observed in the prefrontal cortex region (t = 1.962; df = 6; p = 0.096). The cerebellum (t = 1.258; df = 7; p = 0.249), hippocampus (t = 0.631; df = 7; p = 0.548) and cortex (t = 0.572; df = 7; p = 0.586) showed no significant alterations as compared to wt mouse. In conclusion, we demonstrate that only striatum decreased BDNF levels compared with wild-type (wt) mouse, differently to the other areas of the brain. This dystrophin deficiency may be affecting BDNF levels in striatum and contributing, in part, in memory storage and restoring. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the pregnant mouse endometrium, collagen fibrillogenesis is characterized by the presence of very thick collagen fibrils which are topographically located exclusively within the decidualized stroma. This dynamic biological process is in part regulated by the small leucine-rich proteoglycans decorin and biglycan. In the present study we utilized wild-type (Dcn+/+) and decorin-deficient (Dcn-/-) time-pregnant mice to investigate the evolution of non-decidualized and decidualized collagen matrix in the uterine wall of these animals. Ultrastructural and morphometric analyses revealed that the organization of collagen fibrils in the pregnant endometrium of both non-decidualized and decidualized stroma showed a great variability of shape and size, regardless of the genotype. However, the decidualized endometrium from Dcn-/- mice contained fibrils with larger diameter and more irregular contours as compared to the wild-type littermates. In the Dcn-/- animals, the proportion of thin (10-50 nm) fibrils was also higher as compared to Dcn+/+ animals. On day 7 of pregnancy, biglycan was similarly localized in the decidualized endometrium in both genotypes. Lumican immunostaining was intense both in decidualized and non-decidualized stroma from Dcn-/- animals. The present results support previous findings suggesting that decorin participates in uterine collagen fibrillogenesis. In addition, we suggest that the absence of decorin disturbs the process of lateral assembly of thin fibrils, resulting in very thick collagen fibrils with irregular profiles. Our data further suggest that decorin, biglycan and lumican might play an interactive role in collagen fibrillogenesis in the mouse endometrium, a process modulated according to the stage of pregnancy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The period immediately after exercise is characterized by enhanced insulin action in skeletal muscle, and on the molecular level, by a marked increase in insulin-stimulated, phosphotyrosine-associated phosphatidylinositol (PI) 3-kinase activity. Because the increase in PI 3-kinase activity cannot be explained by increased insulin receptor substrate (IRS)-1 signaling, the present study examined whether this effect is mediated by enhanced IRS-2 signaling. In wild-type (WT) mice, insulin increased IRS-2 tyrosine phosphorylation (2.5-fold) and IRS-2-associated PI 3-kinase activity (3-fold). Treadmill exercise, per se, had no effect on IRS-2 signaling, but in the period immediately after exercise, there was a further increase in insulin-stimulated IRS-2 tyrosine phosphorylation (3.5-fold) and IRS-2-associated PI 3-kinase activity (5-fold). In IRS-2-deficient (IRS-2-/-) mice, the increase in insulin-stimulated, phosphotyrosine-associated PI 3-kinase activity was attenuated as compared with WT mice. However, in IRS-2-/- mice, the insulin-stimulated, phosphotyrosine-associated PI 3-kinase response after exercise was slightly higher than the insulin-stimulated response alone. In conclusion, IRS-2 tyrosine phosphorylation and associated PI 3-kinase activity are markedly enhanced by insulin in the immediate period after exercise. IRS-2 signaling can partially account for the increase in insulin-stimulated phosphotyrosine-associated PI 3-kinase activity after exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Casitas b-lineage lymphoma (c-Cbl) is a multiadaptor protein with E3-ubiquitin ligase activity involved in regulating the degradation of receptor tyrosine kinases. We have recently reported that c-Cbl–/– mice exhibit a lean phenotype and enhanced peripheral insulin action likely due to elevated energy expenditure. In the study reported here, we examined the effect of a high-fat diet on energy homeostasis and glucose metabolism in these animals. When c-Cbl–/– mice were fed a high-fat diet for 4 weeks, they maintained hyperphagia, higher whole-body oxygen consumption (27%), and greater activity (threefold) compared with wild-type animals fed the same diet. In addition, the activity of several enzymes involved in mitochondrial fat oxidation and the phosphorylation of acetyl CoA carboxylase was significantly increased in muscle of high-fat–fed c-Cbl–deficient mice, indicating a greater capacity for fat oxidation in these animals. As a result of these differences, fat-fed c-Cbl–/– mice were 30% leaner than wild-type animals and were protected against high-fat diet–induced insulin resistance. These studies are consistent with a role for c-Cbl in regulating nutrient partitioning in skeletal muscle and emphasize the potential of c-Cbl as a therapeutic target in the treatment of obesity and type 2 diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Casitas b-lineage lymphoma (c-Cbl) is an E3 ubiquitin ligase that has an important role in regulating the degradation of cell surface receptors. In the present study we have examined the role of c-Cbl in whole-body energy homeostasis. c-Cb-/- mice exhibited a profound increase in whole-body energy expenditure as determined by increased core temperature and whole-body oxygen consumption. As a consequence, these mice displayed a decrease in adiposity, primarily due to a reduction in cell size despite an increase in food intake. These changes were accompanied by a significant
increase in activity (2- to 3-fold). In addition, cc-Cb-/- mice displayed a marked improvement in whole-body insulin action, primarily due to changes in muscle metabolism. We observed increased protein levels of the insulin receptor (4-fold) and uncoupling protein-3 (2-fold) in skeletal muscle and a significant increase in the phosphorylation of AMP-activated protein kinase and acetyl-CoA carboxylase. These fmdings suggest that c-Cbl plays an integral role in whole-body fuel homeostasis by regulating whole-body energy expenditure and insulin action.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gene targeting was used to characterize the physiological role of growth factor receptor-bound (Grb)14, an adapter-type signalling protein that associates with the insulin receptor (IR). Adult male Grb14-/- mice displayed improved glucose tolerance, lower circulating insulin levels, and increased incorporation of glucose into glycogen in the liver and skeletal muscle. In ex vivo studies, insulin-induced 2-deoxyglucose uptake was enhanced in soleus muscle, but not in epididymal adipose tissue. These metabolic effects correlated with tissue-specific alterations in insulin signalling. In the liver, despite lower IR autophosphorylation, enhanced insulin-induced tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and activation of protein kinase B (PKB) was observed. In skeletal muscle, IR tyrosine phosphorylation was normal, but signalling via IRS-1 and PKB was increased. Finally, no effect of Grb14 ablation was observed on insulin signalling in white adipose tissue. These findings demonstrate that Grb14 functions in vivo as a tissue-specific modulator of insulin action, most likely via repression of IR-mediated IRS-1 tyrosine phosphorylation, and highlight this protein as a potential target for therapeutic intervention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the study, we investigate whether the expressions of heat shock protein (hsp)60 (a potential autoantigen) and the stress-inducible form of cytoprotector hsp70 are correlated with the development of atherosclerotic lesions in the aortic tree of apolipoprotein E–deficient (apoE-/-) mice. The apoE-/- mouse model is advantageous because the stress-inducible form of hsp70 is not constitutively expressed in mice, unlike primates; hence, tissues under stress can be clearly defined. Both mammalian hsps were detected newly expressed (before mononuclear cell infiltration) on aortic valves and endothelia at lesion-prone sites of 3-week-old apoE-/- mice. In 8- and 20-week-old mice, they were strongly and heterogeneously expressed in early to advanced fibrofatty plaques, with levels correlating with lesion severity. Expression was markedly downregulated in advanced collagenous, acellular, calcified plaques of 40- and 69-week-old mice and was absent in control aortas of normocholesterolemic wild-type (apoE+/+) mice. Western blot analysis of tissue homogenates confirmed the temporal expression of the hsps. Double immunostaining revealed that both hsps were expressed by lesional endothelial cells, macrophages, smooth muscle cells, and CD3+ T lymphocytes. This study provides evidence that hsp60 and hsp70 are temporally expressed on all major cell types in lesion-prone sites during atherogenesis, suggesting that few cells escape the toxic environment of the atherosclerotic plaque.