943 resultados para SUPEROXIDE ANION
Resumo:
Les dommages au nerf optique (neuropathie optique) peuvent entraîner la perte permanente de la vision ou la cécité causée par la mort des cellules ganglionnaires de la rétine (CGR). Nous avons identifié qu’une surproduction de l'anion superoxyde constitue un événement moléculaire critique précédant la mort cellulaire induite par des lésions. Récemment, Suarez-Moreira et al (JACS 131:15078, 2009) ont démontré que la vitamine B12 peut capter l’anion superoxyde aussi efficacement que l’enzyme superoxyde dismutase. La carence en vitamine B12 peut conduire à une neuropathie optique causée par des mécanismes inconnus. Nous avons étudié la relation entre la captation de superoxyde par la cyanocobalamine (forme de vitamine B12 la plus abondante) et ses propriétés neuroprotectrices dans les cellules neuronales. La cyanocobalamine aux concentrations de 10 μM et 100 μM a réduit le taux de production de superoxyde respectivement par 34% et 79% dans les essais sans-cellule. Dans les cellules RGC-5 traités avec la ménadione, les concentrations de cyanocobalamine supérieures à 10 nM ont diminué l’anion superoxyde à des valeurs similaires à celles traitées par PEG-SOD. La cyanocobalamine aux concentrations de 100 μM et 1 μM a réduit la mort des cellules RGC-5 exposées à la ménadione par 20% et 32%, respectivement. Chez les rats avec section du nerf optique unilatérale, une dose intravitréenne de 667 μM de cyanocobalamine a réduit le nombre de CGRs exposées au superoxyde. Cette dose a également augmenté le taux de survie des CGRs comparativement aux rats injectés avec la solution témoin. Ces données suggèrent que la vitamine B12 peut être un neuroprotecteur important, et sa carence nutritionnelle pourrait causer la mort de CGRs. La vitamine B12 pourrait aussi potentiellement être utilisée comme une thérapie pour ralentir la progression de la mort CGR chez les patients avec les neuropathies optiques caractérisés par une surproduction de superoxyde.
Resumo:
Water contaminants have a high potential risk for the health of populations and for this reason their toxic effects urgently should be established. The present study was carried out to determine whether an environmentally realistic intake of water contaminants can induce tissue lesions, and to clarify the contribution of superoxide radical (O-2(.-)) formation to this effect. Male Wistar rats were given drinking water from the Tiett River (group A) and from the Capivara River (group B). The increased creatinine, glucose, alanine transaminase and amylase levels in serum reflected the toxic effects of river-water contaminants to renal, pancreatic and hepatic tissues of rats. As changes in lipoperoxide were observed in rats after river-water intake while superoxide dismutase activities decreased in these animals, it is assumed that the superoxide anion elicits lipoperoxide formation and induces tissue damage. There is evidence that oxygen tension reflects water pollution, since river-water with a-low oxygen tension induced more elevated toxicity in rat tissues. (C) 1999 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The toxic effects of chronic ethanol ingestion were evaluated in male adult rats for 300 days. The animals were divided into three groups: the controls received only tap water as liquid diet; the chronic ethanol ingestion group received only ethanol solution (30%) in semivoluntary research; and the withdrawal group received the same treatment as chronic ethanol-treated rats until 240 days, after which they reverted to drinking water. Chronic ethanol ingestion induced increased lipoperoxide levels and acid phosphatase activities in seminal vesicles. Cu-Zn superoxide dismutase (SOD) decreased from its basal level 70.8 +/- 3.5 to 50.4 +/- 1.6 U/mg protein at 60 days of chronic ethanol ingestion. As changes in GSH-PX activity were observed in rats after chronic ethanol ingestion, while SOD activities were decreased in these animals, it is assumed that superoxide anion elicits lipoperoxide formation and induces cell damage before being converted to hydrogen peroxide by SOD. Ethanol withdrawal induced increased SOD activity and reduced seminar vesicle damage, indicating that the toxic effects were reversible, since increased SOD activity was adequate to scavenge superoxide radical formation. Superoxide radical is an important intermediate in the toxicity of chronic ethanol ingestion. Copyright (C) 1996 Elsevier B.V. Ltd
Resumo:
Peroxynitrite activates the cyclooxygenase activities of constitutive and inducible prostaglandin endoperoxide synthases by serving as a substrate for the enzymes’ peroxidase activities. Activation of purified enzyme is induced by direct addition of peroxynitrite or by in situ generation of peroxynitrite from NO coupling to superoxide anion. Cu,Zn-superoxide dismutase completely inhibits cyclooxygenase activation in systems where peroxynitrite is generated in situ from superoxide. In the murine macrophage cell line RAW264.7, the lipophilic superoxide dismutase-mimetic agents, Cu(II) (3,5-diisopropylsalicylic acid)2, and Mn(III) tetrakis(1-methyl-4-pyridyl)porphyrin dose-dependently decrease the synthesis of prostaglandins without affecting the levels of NO synthase or prostaglandin endoperoxide synthase or by inhibiting the release of arachidonic acid. These findings support the hypothesis that peroxynitrite is an important modulator of cyclooxygenase activity in inflammatory cells and establish that superoxide anion serves as a biochemical link between NO and prostaglandin biosynthesis.
Resumo:
N-Methyl-D-aspartate (NMDA) receptor-mediated neurotoxicity may depend, in part, on the generation of nitric oxide (NO.) and superoxide anion (O2.-), which react to form peroxynitrite (OONO-). This form of neurotoxicity is thought to contribute to a final common pathway of injury in a wide variety of acute and chronic neurologic disorders, including focal ischemia, trauma, epilepsy, Huntington disease, Alzheimer disease, amyotrophic lateral scelerosis, AIDS dementia, and other neurodegenerative diseases. Here, we report that exposure of cortical neurons to relatively short durations or low concentrations of NMDA, S-nitrosocysteine, or 3-morpholinosydnonimine, which generate low levels of peroxynitrite, induces a delayed form of neurotoxicity predominated by apoptotic features. Pretreatment with superoxide dismutase and catalase to scavenge O2.- partially prevents the apoptotic process triggered by S-nitrosocysteine or 3-morpholinosydnonimine. In contrast, intense exposure to high concentrations of NMDA or peroxynitrite induces necrotic cell damage characterized by acute swelling and lysis, which cannot be ameliorated by superoxide dismutase and catalase. Thus, depending on the intensity of the initial insult, NMDA or nitric oxide/superoxide can result in either apoptotic or necrotic neuronal cell damage.
Resumo:
The superoxide radical is considered to play important roles in physiological processes as well as in the genesis of diverse cytotoxic conditions such as cancer, various cardiovascular disorders and neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD) and Alzheimer’s disease (AD). The detection and quantification of superoxide within cells is of critical importance to understand biological roles of superoxide and to develop preventive strategies against free radical-mediated diseases. Cyclic nitrone spin traps such as DMPO, EMPO, DEPMPO, BMPO and their derivatives have been widely used in conjunction with ESR spectroscopy to detect cellular superoxide with some success. However, the formation of unstable superoxide adducts from the reaction of cyclic nitrones with superoxide is a stumbling block in detecting superoxide by using electron spin resonance (ESR). A chemiluminescent probe, lucigenin, and fluorogenic probes, hydroethidium and MitoSox, are the other frequently used methods in detecting superoxide. However, luceginen undergoes redox-cycling producing superoxide by itself, and hydroethidium and MitoSox react with other oxidants apart from superoxide forming red fluorescent products contributing to artefacts in these assays. Hence, both methods were deemed to be inappropriate for superoxide detection. In this study, an effective approach, a selective mechanism-based colorimetric detection of superoxide anion has been developed by using silylated azulenyl nitrones spin traps. Since a nitrone moiety and an adjacent silyl group react readily with radicals and oxygen anions respectively, such nitrones can trap superoxide efficiently because superoxide is both a radical and an oxygen anion. Moreover, the synthesized nitrone is designed to be triggered solely by superoxide and not by other commonly observed oxygen radicals such as hydroxyl radical, alkoxyl radicals and peroxyl radical. In vitro studies have shown that these synthesized silylated azylenyl nitrones and the mitochondrial-targeted guanylhydrazone analog can trap superoxide efficiently yielding UV-vis identifiable and even potentially fluorescence-detectable orange products. Therefore, the chromotropic detection of superoxide using these nitrones can be a promising method in contrast to other available methods.
Resumo:
Background: Xanthine oxidase (XO) is a complex molybdeno-flavoprotein occurring with high activity in the milk fat globule membrane (MFGM) in all mammalian milk and is involved in the final stage of degradation of purine nucleotides. It catalyzes the sequential oxidation of hypoxanthine to xanthine and uric acid, accompanied by production of hydrogen peroxide and superoxide anion. Human saliva has been extensively described for its composition of proteins, electrolytes, cortisol, melatonin and some metabolites such as amino acids, but little is known about nucleotide metabolites. Method: Saliva was collected with swabs from babies; at full-term 1-4 days, 6-weeks, 6-months and 12-months. Unstimulated fasting (morning) saliva samples were collected directly from 77 adults. Breast milk was collected from 24 new mothers. Saliva was extracted from swabs and ultra-filtered. Nucleotide metabolites were analyzed by RP-HPLC with UV-photodiode array and ESI-MS/MS. XO activity was measured as peroxide production from hypoxanthine. Bacterial inhibition over time was assessed using CFU/mL or OD. Results: Median concentrations (μmol/L) of salivary nucleobases and nucleosides for neonates/6-weeks/6-months/12-months/adult respectively were: uracil 5.3/0.8/1.4/0.7/0.8, hypoxanthine 27/7.0/1.1/0.8/2.0, xanthine 19/7.0/2.0/2.0/2.0, adenosine 12/7.0/0.9/0.8/0.1, inosine 11/5.0/0.3/0.4/0.2, guanosine 7.0/6.0/0.5/0.4/0.1, uridine 12/0.8/0.3/0.9/0.4. Deoxynucleosides and dihydropyrimidines concentrations were essentially negligible. XO activity (Vmax:mean ± SD) in breast milk was 8.9 ± 6.2 μmol/min/L and endogenous peroxide was 27 ± 12 μmol/L; mixing breast milk with neonate saliva generated ~40 μmol/L peroxide,which inhibited Staphylococcus aureus. Conclusions: Salivary metabolites, particularly xanthine/hypoxanthine, are high in neonates, transitioning to low adult levels between 6-weeks to 6-months (p < 0.001). Peroxide occurs in breast milk and is boosted during suckling as an antibacterial system.
Resumo:
In order to understand the physiological response of oilseed rape (Brassica napus L.) leaves to cadmium (Cd) stress and exploit the physiological mechanisms involved in Cd tolerance, macro-mineral and chlorophyll concentrations, reactive oxygen species (ROS) accumulation, activities of enzymatic antioxidants, nonenzymatic compounds metabolism, endogenous hormonal changes, and balance in leaves of oilseed rape exposed to 0, 100, or 200 μM CdSO4 were investigated. The results showed that under Cd exposure, Cd concentrations in the leaves continually increased while macro-minerals and chlorophyll concentrations decreased significantly. Meanwhile, with increased Cd stress, superoxide anion (O 2 • − ) production rate and hydrogen peroxide (H2O2) concentrations in the leaves increased significantly, which caused malondialdehyde (MDA) accumulation and oxidative stress. For scavenging excess accumulated ROS and alleviating oxidative injury in the leaves, the activity of enzymatic antioxidants, such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), was increased significantly at certain stress levels. However, with increased Cd stress, the antioxidant enzyme activities all showed a trend towards reduction. The nonenzymatic antioxidative compounds, such as proline and total soluble sugars, accumulated continuously with increased Cd stress to play a long-term role in scavenging ROS. In addition, ABA levels also increased continuously with Cd stress while ZR decreased and the ABA/ZR ratio increased, which might also be providing a protective role against Cd toxicity.
Resumo:
Vanadate in the polymeric form of decavanadate, but not other forms, stimulated oxidation of NADH to NAD+ NADPH was also oxidized with comparable rates. This oxidation of NADH was accompanied by uptake of oxygen and generated hydrogen peroxide with the following stoichiometry: NADH + H+ + O2 → NAD+ + H2O2. The reaction followed second-order kinetics. The rate was dependent on the concentration of both NADH and vanadate and increased with decreasing pH. The reaction had an obligatory requirement for phosphate ions. Esr studies in the presence of the spin trap dimethyl pyrroline N oxide indicated the involvement of Superoxide anion as an intermediate. The reaction was sensitive to Superoxide dismutase and other scavengers of superoxide anions.
Resumo:
The oxidation of NADH and accompanying reduction of oxygen to H2O2 stimulated by polyvanadate was markedly inhibited by SOD and cytochrome c. The presence of decavanadate, the polymeric form, is necessary for obtaining the microsomal enzyme-catalyzed activity. The accompanying activity of reduction of cytochrome c was found to be SOD-insensitive and therefore does not represent superoxide formation. The reduction of cytochrome c by vanadyl sulfate was also SOD-insensitive. In the presence of H2O2 all the forms of vanadate were able to oxidize reduced cytochrome c, which was sensitive to mannitol, tris and also catalase, indicating H202-dependent generation of hydroxyl radicals. Using ESR and spin trapping technique only hydroxyl radicals, but not superoxide anion radicals, were detected during polyvanadate-dependent NADH oxidation.
Resumo:
Altas concentrações plasmáticas de leptina têm sido relacionadas ao aumento da formação de espécies reativas de oxigênio (ROS) que podem desempenhar um papel regulador central em eventos inflamatórios e cardiovasculares. Estudos recentes têm demonstrado que a vitamina D é capaz de reduzir marcadores do estresse oxidativo, bem como modular a produção de citocinas inflamatórias. O objetivo do presente estudo foi avaliar o efeito do pré-tratamento com concentração fisiológica (10-10 M) e suprafisiológica(10-7 M) de 1,25(OH)2D3 na produção do ânion superóxido (O2) e nos fatores de transcrição NF-κB e Nrf2,em células endoteliais humanas estimuladas com diferentes concentrações de leptina (1 e 10 ng/mL). Quando as células foram pré-tratadas com 1,25(OH)2D3, e estimuladas com leptina (1 e 10 ng/mL), a 1,25(OH)2D3 reduziu (p<0,05) a produção de ânion superóxido (O ), principalmente na concentração de 10-7 M. O fator de transcrição NF-κB foi positivamente ativado em células incubadas com 10 ng/mL de leptina, entretanto, quando se realizou o pré-tratamento com 1,25(OH)2D3 houve redução da translocação do NF-κB, assim como a produção de citocinas reguladas por este fator de transcrição. Também foi observado que o pré-tratamento com 10-7 M de 1,25(OH)2D3 aumentou de forma significativa (p<0,05) a expressão do fator de transcrição Nrf2 na fração nuclear em comparação ao controle, principalmente quando associada à 10 ng/mL de leptina (p<0,05). Tomados em conjunto, nossos resultados indicam que o tratamento com ambas as concentrações, 10-10 e 10-7 M de 1,25(OH)2D3 em células endoteliais humanas, foram eficazes em inibir a produção do ânion superóxido (O2), citocinas pró-inflamatórias, bem como inibir a translocação nuclear do fator de transcrição NF-κB, e ativar a via antioxidante Nrf2. Estes achados sugerem que o pré-tratamento com ambas as concentrações (fisiológica e suprafisiológica) de 1,25(OH)2D3 na presença de alta concentração de leptina, pode ter um efeito positivo no endotélio através da regulação de marcadores de inflamação e atividade antioxidante
Resumo:
ROS (reactive oxygen species) take an important signalling role in angiogenesis. Although there are several ways to produce ROS in cells, multicomponent non-phagocytic NADPH oxidase is an important source of ROS that contribute to angiogenesis. In the present work, we examined the effects of H2O2 on angiogenesis including proliferation and migration in HUVECs (human umbilical vein endothelial cells), new vessel formation in chicken embryo CAM (chorioallantoic membrane) and endothelial cell apoptosis, which is closely related to anti-angiogenesis. Our results showed that H2O2 dose-dependently increased the generation of O-2(-) (superoxide anion) in HUVECs, which was suppressed by DPI (diphenylene iodonium) and APO (apocynin), two inhibitors of NADPH oxidase. H2O2 at low concentrations (10 mu M) stimulated cell proliferation and migration, but at higher concentrations, inhibited both. Similarly, H2O2 at 4 nmol/cm(2) strongly induced new vessel formation in CAM, while it suppressed at high concentrations (higher than 4 nmol/cm(2)). Also, H2O2 (200 similar to 500 mu M) could stimulate apoptosis in HUVECs. All the effects of H2O2 on angiogenesis could be suppressed by NADPH oxidase inhibitors, which suggests that NADPH oxidase acts downstream of H2O2 to produce O-2(-) and then to regulate angiogenesis. In summary, our results suggest that H2O2 as well as O-2(-) mediated by NADPH oxidase have biphasic effects on angiogenesis in vitro and in vivo.
Resumo:
The aim of this study was to test the protective roles of superoxide dismutases (SODs), guaiacol peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) against oxidative damage and their activities in different phases of the dry down process in Reaumuria soongorica (Pall.) Maxim. leaves. Drought stress was imposed during 100 consecutive days and rewatering after 16, 72, and 100 days. The concentration of hydrogen peroxide (H2O2), malondialdehyde, and SODs activities were elevated significantly with progressing drought stress. POD and CAT activities increased markedly in the early phase of drought and decreased significantly with further drought stress continuation, and POD activity was unable to recover after rewatering. Ascorbate, reduced glutathione, APX, and GR activities declined in the initial stages of drought process, elevated significantly with further increasing water deficit progression and recovered after rewatering. These results indicate that: (1) iron SODs-removing superoxide anion is very effective during the whole drought stress; (2) CAT scavenges H2O2 in the early phase of drought and enzymes of ascorbate-glutathione cycle scavenge H2O2 in further increasing drought stress; and (3) POD does not contribute to protect against oxidative damage caused by H2O2 under drought stress.
Resumo:
In this study, the antioxidant activity of proteins isolated from jellyfish, Rhopilema esculentum Kishinouye (R. esculentum), was determined by various antioxidant assays, including superoxide anion radical-scavenging, hydroxyl radical-scavenging, total antioxidant activity, reducing power and metal chelating activity. Butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), alpha-tocopherol, vitamin C and mannitol were used as standards in those various antioxidant activities. The crude protein (CP) and the protein fractions isolated by Sephadex chromatography, first peak (FP) and second peak (SP), had very low reductive power and metal chelating abilities compared to EDTA, but they showed strong scavenging effects on the superoxide anion radical, hydroxyl radical and varying total antioxidant activity. FP and SP exhibited stronger scavenging effects on the superoxide anion radical than BHA, BHT or a-tocopherol. The EC50 values of FP and SP were 6.12 and 0.88 mu g/ml, respectively, while values EC50 of BHA, BHT and alpha-tocopherol were 31, 61 and 88 mu g/ml, respectively. CP, FP and SP showed far higher hydroxyl radical-scavenging activities than did vitamin C or mannitol. The EC50 values of CP, FP and SP were 48.76, 45.42 and 1.52 mu g/ml, but EC50 values of vitamin C and mannitol were 1907 and 4536 mu g/ml, respectively. In a beta-carotene-linoleate system, SP and CP showed antioxidant activity, but lower than BHA. Of the three samples, SP had the strongest antioxidant activity. So, SP may have a use as a possible supplement in the food and pharmaceutical industries. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
In this study, radical scavenging activity of protein from tentacles of jellyfish Rhopilema esculentum (R. esculentum) was assayed including superoxide anion radical and hydroxyl radical scavenging. The protein samples showed strong scavenging activity on superoxide anion radical and values EC50 of full protein (FP), first fraction (IFF), second fraction (SF), and 30% (NH4)(2)SO4 precipitate (Fr-1) were 2.65, 7.28, 1.10, and 22.51 mu g/mL, respectively, while values EC50 of BHA, BHT, and alpha-tocopherol were 31, 6 1, and 88 pg/mL, respectively. Also, the protein samples had strong scavenging effect on hydroxyl radical and the values EC50 of FP, FF, SF, Fr-1, and Fr-2 were 48.91, 27.72, 1.82, 16.36, and 160.93 mu g/mL, but values EC50 of Vc and mannitol were 1907 and 4536 mu g/mL, respectively. Of the five protein samples, SF had the strongest radical scavenging activity and may have a use as a possible supplement in the food and pharmaceutical industries. The radical scavenging activity was stable at high temperature so that R. esculentum may be used as a kind of natural functional food. (c) 2005 Elsevier Ltd. All rights reserved.