946 resultados para STM - Scanning Tunneling Microscope
Resumo:
L1, L2 and L3 of Oxysarcodexia paulistanensis (Mattos), L3 of O. confusa Lopes, L2 of Ravinia belforti (Prado & Fonseca) and L2 of Oxyvinia excisa (Lopes) were described and figured using scanning electron microscope.
Resumo:
Male genitalia of Oxyvinia exicisa (Lopes), Oxysarcodexia thomax (Walker), O. fluminensis Lopes, Sarcodexia lambens (Wiedemann), Peckia chrysostoma (Wiedemann) and Liopygia ruficornis (Fabricius) were studied based on scanning electron microscope photography. Some important details were evidentiated with this method.
Resumo:
Coating and filler pigments have strong influence to the properties of the paper. Filler content can be even over 30 % and pigment content in coating is about 85-95 weight percent. The physical and chemical properties of the pigments are different and the knowledge of these properties is important for optimising of optical and printing properties of the paper. The size and shape of pigment particles can be measured by different analysers which can be based on sedimentation, laser diffraction, changes in electric field etc. In this master's thesis was researched particle properties especially by scanning electron microscope (SEM) and image analysis programs. Research included nine pigments with different particle size and shape. Pigments were analysed by two image analysis programs (INCA Feature and Poikki), Coulter LS230 (laser diffraction) and SediGraph 5100 (sedimentation). The results were compared to perceive the effect of particle shape to the performance of the analysers. Only image analysis programs gave parameters of the particle shape. One part of research was also the sample preparation for SEM. Individual particles should be separated and distinct in ideal sample. Analysing methods gave different results but results from image analysis programs corresponded even to sedimentation or to laser diffraction depending on the particle shape. Detailed analysis of the particle shape required high magnification in SEM, but measured parameters described very well the shape of the particles. Large particles (ecd~1 µm) could be used also in 3D-modelling which enabled the measurement of the thickness of the particles. Scanning electron microscope and image analysis programs were effective and multifunctional tools for particle analyses. Development and experience will devise the usability of analysing method in routine use.
Resumo:
This paper proposes a calibration method which can be utilized for the analysis of SEM images. The field of application of the developed method is a calculation of surface potential distribution of biased silicon edgeless detector. The suggested processing of the data collected by SEM consists of several stages and takes into account different aspects affecting the SEM image. The calibration method doesn’t pretend to be precise but at the same time it gives the basics of potential distribution when the different biasing voltages applied to the detector.
Resumo:
Because of technical principles, samples to be observed with electron microscopy need to be fixed in a chemical process and exposed to vacuum conditions that can produce some changes in the morphology of the specimen. The aim of this work was to obtain high-resolution images of the fresh articular cartilage surface with an environmental scanning electron microscope (ESEM), which is an instrument that permits examination of biological specimens without fixation methods in a 10 Torr chamber pressure, thus minimizing the risk of creating artifacts in the structure. Samples from weight-bearing areas of femoral condyles of New Zealand white rabbits were collected and photographed using an ESEM. Images were analyzed using a categorization based in the Jurvelin classification system modified by Hong and Henderson. Appearance of the observed elevations and depressions as described in the classification were observed, but no fractures or splits of cartilage surface, thought to be artifacts, were detected. The ESEM is a useful tool to obtain images of fresh articular cartilage surface appearance without either employing fixation methods or exposing the specimen to extreme vacuum conditions, reducing the risk of introducing artifacts within the specimen. For all these reasons it could become a useful tool for quality control of the preservation process of osteochondral allografting in a bank of musculoskeletal tissues.
Resumo:
The main idea of this diploma work is to study electric field distribution on the micro level. For this purpose a silicon edgeless detector was chosen as the object of investigation and scanning electron microscope as an investigation tool. Silicon edgeless detector is an important part of installation for studying proton-proton interactions in TOTEM experiment at Large Hadron Collider. For measurement of electric field distribution inside scanning electron microscope a voltage contrast method was applied.
Resumo:
The Young’s modulus and Poisson’s ratio of high-quality silicon nitride films with 800 nm thickness, grown on silicon substrates by low-pressure chemical vapor deposition, were determined by measuring the dispersion of laser-induced surface acoustic waves. The Young’s modulus was also measured by mechanical tuning of commercially available silicon nitride cantilevers, manufactured from the same material, using the tapping mode of a scanning force microscope. For this experiment, an expression for the oscillation frequencies of two-media beam systems is derived. Both methods yield a Young’s modulus of 280–290 GPa for amorphous silicon nitride, which is substantially higher than previously reported (E5146 GPa). For Poisson’s ratio, a value of n 50.20 was obtained. These values are relevant for the determination of the spring constant of the cantilever and the effective tip–sample stiffness
Resumo:
(i) The electronic and structural properties of boron doped graphene sheets, and (ii) the chemisorption processes of hydrogen adatoms on the boron doped graphene sheets have been examined by ab initio total energy calculations. In (i) we find that the structural deformations are very localized around the boron substitutional sites, and in accordance with previous studies (Endo et al 2001 J. Appl. Phys. 90 5670) there is an increase of the electronic density of states near the Fermi level. Our simulated scanning tunneling microscope (STM) images, for occupied states, indicate the formation of bright (triangular) spots lying on the substitutional boron (center) and nearest-neighbor carbon (edge) sites. Those STM images are attributed to the increase of the density of states within an energy interval of 0.5 eV below the Fermi level. For a boron concentration of similar to 2.4%, we find that two boron atoms lying on the opposite sites of the same hexagonal ring (B1-B2 configuration) represents the energetically most stable configuration, which is in contrast with previous theoretical findings. Having determined the energetically most stable configuration for substitutional boron atoms on graphene sheets, we next considered the hydrogen adsorption process as a function of the boron concentration, (ii). Our calculated binding energies indicate that the C-H bonds are strengthened near boron substitutional sites. Indeed, the binding energy of hydrogen adatoms forming a dimer-like structure on the boron doped B1-B2 graphene sheet is higher than the binding energy of an isolated H(2) molecule. Since the formation of the H dimer-like structure may represent the initial stage of the hydrogen clustering process on graphene sheets, we can infer that the formation of H clusters is quite likely not only on clean graphene sheets, which is in consonance with previous studies (Hornekaer et al 2006 Phys. Rev. Lett. 97 186102), but also on B1-B2 boron doped graphene sheets. However, for a low concentration of boron atoms, the formation of H dimer structures is not expected to occur near a single substitutional boron site. That is, the formation (or not) of H clusters on graphene sheets can be tuned by the concentration of substitutional boron atoms.
Resumo:
A superfície interna das bisnagas fabricadas com alumínio não revestido e revestido com resina epóxi, utilizadas para acondicionar cremes, pomadas, géis, etc., foram avaliadas quimicamente e por métodos microbiológicos correlacionados com a aderência de microrganismos. A prova da porosidade e da resistência à remoção da resina foi observada por meio do microscópio eletrônico de varredura (Topcon FM300) e estereoscópio Leica (MZ12) acoplado a Sistema de Digitalização de Imagens. Para avaliar a ação dos microrganismos foram utilizados corpos-de-prova esterilizados (discos de 10mm de diâmetro), imersos em caldo Mueller Hinton (Difco) e colocados em tubos de polipropileno com tampa de rosca (Corning). Foram inoculados tubos com meio de cultura para cada uma das suspensões bacterianas (10(9)UFC/mL) de Streptococcus agalactiae, Staphylococcus aureus, Acinetobacter lwoffii e Candida albicans, incubados a 37°C, sob agitação constante durante 12 dias. O meio de cultura era trocado a cada 3 dias. Após esse período, os corpos-de prova foram removidos, processados e observados em microscópio eletrônico de varredura JEOL-JSM (T330A). A observação por meio do microscopio eletrônico de varredura mostrou a aderência e a formação de biofilme sobre a superfície de alumínio não revestido e revestido com resina epóxi.
Resumo:
Background: Ultrasonic excitation (US) was applied to glass ionomer cement (GIC) during early set time to increase the advantageous properties of this material. Purpose: The aim of this in vitro study was to assess the inner porosity of GIC after US. Study design: A total of 16 specimens, for each material, were prepared from high-viscosity GIC Fuji IX GP, Ketac Molar, and Ketac Molar Easymix. Half of these specimens (n = 8) received 30 s of US during the initial cement setting. After completion of the material setting, specimens were fractured and observed by scanning electronic microscopy to quantitatively assay porosity inside the material using Image J software. Results: Statistical data analysis revealed that US reduced the porosity for all tested materials (P <= 0.05). The following reductions (expressed in percentages) were achieved: Fuji IX-from 3.9% to 2.8%; Ketac Molar Easy Mix-from 4.4% to 2.6%, and Ketac Molar-from 2.4% to 1.6%. Conclusion: Under the tested conditions, US was an effective method for porosity reduction inside the material. Microsc. Res. Tech. 74:54-57, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objective: the Nd:YAG laser irradiation of dental enamel was evaluated in enamel demineralization experiments in a Streptococcus mutans culture media. Summary Background Data: Previous studies had shown that a continuous wave Nd:YAG laser at an energy of approximately 67 mJ may induce an increased acid resistance in human dental enamel when exposed to severe demineralization conditions. Methods: Enamel windows of 3 x 4 cm in the buccal surface were irradiated with a continuous wave Nd:YAG laser at a wavelength of 1,064 Ecm using energy densities of from 83.75 to 187.50 J/cm(2), Enamel windows of 3 x 4 cm on the lingual surface served as control (without the laser irradiation). The enamel windows were then exposed to a Streptococcus mutans culture media at a temperature of 37 degrees C for 15 and 21 days. The laser effects and demineralization were examined both by optical microscopy and scanning electron microscopy (SEM), Results: A comparison between the lased and the unlased windows of enamel showed fusion and recrystalization of the enamel and increased acid-resistance in all groups irradiated with the Nd:YAG laser, on the other hand, the 3 x 4 delimited enamel surfaces from the control group (not irradiated with the Nd:YAG laser) showed 100% deminerization, Conclusions: These findings are consistent with the finding that laser irradiation of dental results in significant reduction of the effective solubility of enamel mineral.
Resumo:
Objective. The aim of this study was to evaluate, by scanning electronic microscopy (SEM), the cleaning of the root canal walls after instrumentation and irrigation with 2.5% sodium hypochlorite (NaOCl) associated with 2% chlorhexidine (CHX) gel or liquid, combined or not with 17% ethylenediamine tetra-acetic acid (EDTA).Study design. Sixty single-root human teeth were subjected to standardized root canal instrumentation with different irrigants (n = 10): G1) NaOCl + CHX liquid; G2) NaOCl + CHX liquid + EDTA + saline solution; G3) NaOCl + CHX gel; G4) NaOCl + CHX gel + EDTA + saline solution; G5) saline solution; G6) saline solution + EDTA. After instrumentation, the teeth were prepared for SEM analysis (x500 and x2,000) to evaluate the cleaning of the cervical, middle, and apical thirds. The area analyzed was quantified according to the percentage of open and closed tubules, and data were statistically analyzed by analysis of variance and Tukey tests (P = .05).Results. The number of open tubules was highest in G4 in all root thirds, showing statistically significant difference from G1, G2, and G5 (P < .05). G1 presented higher quantity of closed tubules significant than G2.Conclusion. Irrigation with NaOCl and CHX gel followed by EDTA and saline solution produced greater cleaning of the root canal walls. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;110:e82-e87)
Resumo:
Objective: The aim of this study is to analyze the effects of copper vapor laser radiation on the radicular wall of human teeth. Materials and Methods: Immediately after the crowns of 10 human uniradicular teeth were cut along the cement-enamel junction, a chemical-surgical preparation of the radicular canals was completed. Then the roots were longitudinally sectioned to allow for irradiation of the surfaces of the dentin walls of the root canals. The hemi-roots were separated into two groups: one (control) with five hemi-roots that were not irradiated, and another (experimental) with 15 hemi-roots divided into three subgroups that were submitted to the following exposure times: 0.02,0.05, and 0.1 s. A copper vapor laser (510.6 nm) with a total average power of 6.5 W in green emission, frequency of 16.000 Hz, and pulse duration of 30 ns was used. Results: The results obtained by scanning electron microscope analysis showed the appearance of a cavity in the region of laser beam impact, with melting, recrystallization, and cracking on the edges of the dentin of the cavity due to heat diffusion. Conclusions: We determined that the copper vapor laser produces significant morphologic changes in the radicular wall of human teeth when using the parameters in this study. However, further research should be done to establish parameters that are compatible with dental structure in order to eliminate thermal damages. © Mary Ann Liebert, Inc.
Resumo:
Purpose: The aim of this study was to evaluate the interfacial microgap with different materials used for pulp protection. The null hypothesis tested was that the combination of calcium hydroxide, resin-modified glass ionomer, and dentin adhesive used as pulp protection in composite restorations would not result in a greater axial gap than that obtained with hybridization only. Materials and Methods: Standardized Class V preparations were performed in buccal and lingual surfaces of 60 caries-free, extracted human third molars. The prepared teeth were randomly assessed in six groups: (1) Single Bond (SB) (3M ESPE, St. Paul, MN, USA); (2) Life (LF) (Kerr Co., Romulus, MI, USA) + SB; (3) LF + Vitrebond (VT) (3M ESPE) + SB; (4) VT + SB; (5) SB + VT; (6) SB + VT + SB. They were restored with microhybrid composite resin Filtek Z250 (3M ESPE), according to the manufacturer's instructions. However, to groups 5 and 6, the dentin bonding adhesive was applied prior to the resin-modified glass ionomer. The specimens were then thermocycled, cross-sectioned through the center of the restoration, fixed, and processed for scanning electron microscopy. The specimens were mounted on stubs and sputter coated. The internal adaptation of the materials to the axial wall was analyzed under SEM with × 1,000 magnification. Results: The data obtained were analyzed with nonparametric tests (Kruskal-Wallis, p ≤ .05). The null hypothesis was rejected. Calcium hydroxide and resin-modified glass ionomer applied alone or in conjunction with each other (p < .001) resulted in statistically wider microgaps than occurred when the dentin was only hybridized prior to the restoration. ©2005 BC Decker Inc.