990 resultados para SOLVENT SYSTEM


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Radical anions are present in several chemical processes, and understanding the reactivity of these species may be described by their thermodynamic properties. Over the last years, the formation of radical ions in the gas phase has been an important issue concerning electrospray ionization mass spectrometry studies. In this work, we report on the generation of radical anions of quinonoid compounds (Q) by electrospray ionization mass spectrometry. The balance between radical anion formation and the deprotonated molecule is also analyzed by influence of the experimental parameters (gas-phase acidity, electron affinity, and reduction potential) and solvent system employed. The gas-phase parameters for formation of radical species and deprotonated species were achieved on the basis of computational thermochemistry. The solution effects on the formation of radical anion (Q(center dot-)) and dianion (Q(2-)) were evaluated on the basis of cyclic voltammetry analysis and the reduction potentials compared with calculated electron affinities. The occurrence of unexpected ions [Q + 15](-) was described as being a reaction between the solvent system and the radical anion, Q(center dot-).The gas-phase chemistry of the electrosprayed radical anions was obtained by collisional-induced dissociation and compared to the relative energy calculations. These results are important for understanding the formation and reactivity of radical anions and to establish their correlation with the reducing properties by electrospray ionization analyses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Poly(vinylidene fluoride-trifluoethylene) electrospun membranes were obtained from a blend of dimethylformamide (DMF) and methylethylketone (MEK) solvents. The inclusion of the MEK to the solvent system promotes a faster solvent evaporation allowing complete polymer crystallization during the jet travelling between the tip and the grounded collector. Several processing parameters were systematically changed to study their influence on fiber dimensions. Applied voltage and inner needle diameter do not have large influence on the electrospun fiber average diameter but in the fiber diameter distribution. On the other hand, the increase of the distance between the needle tip to collector results in fibers with larger average diameter. Independently on the processing conditions, all mats are produced in the electroactive phase of the polymer. Further, MC-3T3-E1cell adhesion was not inhibited by the fiber mats preparation, indicating their potential use for biomedical applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Química e Bioquímica

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Summary: Lipophilicity plays an important role in the determination and the comprehension of the pharmacokinetic behavior of drugs. It is usually expressed by the partition coefficient (log P) in the n-octanol/water system. The use of an additional solvent system (1,2-dichlorethane/water) is necessary to obtain complementary information, as the log Poct values alone are not sufficient to explain ail biological properties. The aim of this thesis is to develop tools allowing to predict lipophilicity of new drugs and to analyze the information yielded by those log P values. Part I presents the development of theoretical models used to predict lipophilicity. Chapter 2 shows the necessity to extend the existing solvatochromic analyses in order to predict correctly the lipophilicity of new and complex neutral compounds. In Chapter 3, solvatochromic analyses are used to develop a model for the prediction of the lipophilicity of ions. A global model was obtained allowing to estimate the lipophilicity of neutral, anionic and cationic solutes. Part II presents the detailed study of two physicochemical filters. Chapter 4 shows that the Discovery RP Amide C16 stationary phase allows to estimate lipophilicity of the neutral form of basic and acidic solutes, except of lipophilic acidic solutes. Those solutes present additional interactions with this particular stationary phase. In Chapter 5, 4 different IANI stationary phases are investigated. For neutral solutes, linear data are obtained whatever the IANI column used. For the ionized solutes, their retention is due to a balance of electrostatic and hydrophobie interactions. Thus no discrimination is observed between different series of solutes bearing the same charge, from one column to an other. Part III presents two examples illustrating the information obtained thanks to Structure-Properties Relationships (SPR). Comparing graphically lipophilicity values obtained in two different solvent systems allows to reveal the presence of intramolecular effects .such as internai H-bond (Chapter 6). SPR is used to study the partitioning of ionizable groups encountered in Medicinal Chemistry (Chapter7). Résumé La lipophilie joue un .rôle important dans la détermination et la compréhension du comportement pharmacocinétique des médicaments. Elle est généralement exprimée par le coefficient de partage (log P) d'un composé dans le système de solvants n-octanol/eau. L'utilisation d'un deuxième système de solvants (1,2-dichloroéthane/eau) s'est avérée nécessaire afin d'obtenir des informations complémentaires, les valeurs de log Poct seules n'étant pas suffisantes pour expliquer toutes les propriétés biologiques. Le but de cette thèse est de développer des outils permettant de prédire la lipophilie de nouveaux candidats médicaments et d'analyser l'information fournie par les valeurs de log P. La Partie I présente le développement de modèles théoriques utilisés pour prédire la lipophilie. Le chapitre 2 montre la nécessité de mettre à jour les analyses solvatochromiques existantes mais inadaptées à la prédiction de la lipophilie de nouveaux composés neutres. Dans le chapitre 3, la même méthodologie des analyses solvatochromiques est utilisée pour développer un modèle permettant de prédire la lipophilie des ions. Le modèle global obtenu permet la prédiction de la lipophilie de composés neutres, anioniques et cationiques. La Partie II présente l'étude approfondie de deux filtres physicochimiques. Le Chapitre 4 montre que la phase stationnaire Discovery RP Amide C16 permet la détermination de la lipophilie de la forme neutre de composés basiques et acides, à l'exception des acides très lipophiles. Ces derniers présentent des interactions supplémentaires avec cette phase stationnaire. Dans le Chapitre 5, 4 phases stationnaires IAM sont étudiées. Pour les composés neutres étudiés, des valeurs de rétention linéaires sont obtenues, quelque que soit la colonne IAM utilisée. Pour les composés ionisables, leur rétention est due à une balance entre des interactions électrostatiques et hydrophobes. Donc aucune discrimination n'est observée entre les différentes séries de composés portant la même charge d'une colonne à l'autre. La Partie III présente deux exemples illustrant les informations obtenues par l'utilisation des relations structures-propriétés. Comparer graphiquement la lipophilie mesurée dans deux différents systèmes de solvants permet de mettre en évidence la présence d'effets intramoléculaires tels que les liaisons hydrogène intramoléculaires (Chapitre 6). Cette approche des relations structures-propriétés est aussi appliquée à l'étude du partage de fonctions ionisables rencontrées en Chimie Thérapeutique (Chapitre 7) Résumé large public Pour exercer son effet thérapeutique, un médicament doit atteindre son site d'action en quantité suffisante. La quantité effective de médicament atteignant le site d'action dépend du nombre d'interactions entre le médicament et de nombreux constituants de l'organisme comme, par exemple, les enzymes du métabolisme ou les membranes biologiques. Le passage du médicament à travers ces membranes, appelé perméation, est un paramètre important à optimiser pour développer des médicaments plus puissants. La lipophilie joue un rôle clé dans la compréhension de la perméation passive des médicaments. La lipophilie est généralement exprimée par le coefficient de partage (log P) dans le système de solvants (non miscibles) n-octanol/eau. Les valeurs de log Poct seules se sont avérées insuffisantes pour expliquer la perméation à travers toutes les différentes membranes biologiques du corps humain. L'utilisation d'un système de solvants additionnel (le système 1,2-dichloroéthane/eau) a permis d'obtenir les informations complémentaires indispensables à une bonne compréhension du processus de perméation. Un grand nombre d'outils expérimentaux et théoriques sont à disposition pour étudier la lipophilie. Ce travail de thèse se focalise principalement sur le développement ou l'amélioration de certains de ces outils pour permettre leur application à un champ plus large de composés. Voici une brève description de deux de ces outils: 1)La factorisation de la lipophilie en fonction de certaines propriétés structurelles (telle que le volume) propres aux composés permet de développer des modèles théoriques utilisables pour la prédiction de la lipophilie de nouveaux composés ou médicaments. Cette approche est appliquée à l'analyse de la lipophilie de composés neutres ainsi qu'à la lipophilie de composés chargés. 2)La chromatographie liquide à haute pression sur phase inverse (RP-HPLC) est une méthode couramment utilisée pour la détermination expérimentale des valeurs de log Poct.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Droplet counter-current chromatography, rotation locular counter-current chromatography and high-speed counter-current chromatography were applied to the preparative separation of the alkaloid ricinine from the dichloromethane extracts of Ricinus communis leaves. The solvent system used was composed of dichloromethane-methanol-water (93:35:72 v/v/v) and all techniques led to the isolation of large amounts of the alkaloid. The best result was obtained through HSCCC, since the ricinine yield was respectively 50% and 30% higher than when using RLCCC or DCCC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High-speed counter-current chromatography (HSCCC) is a major tool for the fast separation of natural products from plants. It was used for the preparative isolation of the flavonoid monoglucosides present in the aerial parts of the Davilla elliptica St. Hill. (Dilleniaceae). This species is used in Brazilian folk medicine for the treatment of gastric disorders. The optimum solvent system used was composed of a mixture of ethyl acetate-n-propanol-water (140:8:80, v/v/v) and led to a successful separation of quercetin-3-O-alpha-L-rhamnopyranoside and myricetin-3-O-alpha-L-rhamnopyranoside in approximately 3.0 hours with purity higher than 95%. Identification was performed by ¹H NMR, 13C NMR and HPLC-UV-DAD analyses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Preparative high-speed counter-current chromatography (HSCCC) was successfully applied for separation and purification of sesquiterpenoids from an extract of Tussilago farfara L. with a two-phase solvent system composed of n-hexane-ethyl acetate- methanol-water (1:0.5:1.1:0.3, v/v/v/v). The separation produced a total of 32 mg of tussilagone, 18 mg of 14-acetoxy-7β-(3'-ethyl cis-crotonoyloxy)-lα-(2'-methyl butyryloxy)-notonipetranone and 21 mg of 7β-(3'-ethyl cis-crotonoyloxy)-lα-(2'- methyl butyryloxy)-3,14-dehydro-Z-notonipetranone from 500 mg of the crude extract in one step separation with the purity of 99.5, 99.4 and 99.1%, respectively, as determined by HPLC. The structures of these compounds were identified by ESI-MS, ¹H-NMR and 13C-NMR.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Supercritical fluid extraction was used to extract active compounds from the Chinese traditional medicinal D. dasycarpus under the pressure of 30 MPa and temperature of 45 ºC. Further separation and purification was established by high-speed counter-current chromatography (HSCCC) with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (1:0.8:1.3:0.9, volume ratio). The separation yielded a total of 47 mg of dictamnine, 24 mg of obacunone and 83 mg of fraxinellone from 1.0 g of the crude extract in one step separation with the purity of 99.2, 98.4 and 99.0%, respectively, as determined by HPLC. The chemical structures of these compounds were identified by ESI-MS, IR, ¹H-NMR and 13C-NMR.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Eight bufadienolides were successfully isolated and purified from ChanSu by high-speed counter-current chromatography (HSCCC) combined with preparative HPLC (prep-HPLC). First, a stepwise elution mode of HSCCC with the solvent system composed of petroleum ether - ethyl acetate - methanol - water (4:6:4:6, 4:6:5:5, v/v) was employed and four bufadienolides, two partially purified fractions were obtained from 200 mg of crude extract. The partially purified fractions III and VI were then further separated by prep-HPLC, respectively, and another four bufadienolides were recovered. Their structures were confirmed by ESI-MS and ¹H-NMR spectra.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The technique of pH-zone-refining counter-current chromatography was successfully applied to preparatively separate three C19-diterpenoid alkaloids from the crude extracts of Aconitum carmichaelii for the first time using a two-phase solvent system of petroleum ether-ethyl acetate-methanol-water (5:5:1:9, v/v/v/v). Mesaconitine (I), hypaconitine (II), and deoxyaconitine (III) were obtained from 2.5 g of the crude alkaloids in a one-step separation; the yields were 4.16%, 16.96%, and 5.05%, respectively. The purities of compounds I, II, and III were 93.0%, 95%, and 96%, respectively, as determined by HPLC. The chemical structures of the three compounds were identified by electrospray ionization mass spectrometry (ESI-MS) and NMR.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An effective method for the rapid separation and purification of three stilbenes from the radix of Polygonum cillinerve (Nakai) Ohwl by macroporous resin column chromatography combined with high-speed counter-current chromatography (HSCCC) was successfully established. In the present study, a two-phase solvent system composed of chloroform-n-butanol-methanol-water (4:1:4:2, v/v/v/v) was used for HSCCC separation. A one-step separation in 4 h from 150 mg of crude extract produced 26.3 mg of trans-resveratrol-3-O-glucoside, 42.0 mg of pieceid-2"-O-gallate, and 17.9 mg of trans-resveratrol with purities of 99.1%, 97.8%, and 99.4%, respectively, as determined by high-performance liquid chromatography (HPLC). The chemical structures of these compounds were identified by nuclear magnetic resonance (NMR) spectroscopy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stabilized nano-sized water droplet carrying water-soluble Co2+ species is employed as a new catalyst system for the oxidation of the alkyl aromatics in the presence of a fluorinated surfactant. This stable system contains no labile C-H structure and can facilitate excellent mixing of catalytic Co(II)/NaBr species, hydrocarbon substrates and oxygen in supercritical carbon dioxide fluid, which is demonstrated to be an excellent alternative solvent system to acetic acid or nitric acid for air oxidation of a number of alkyl aromatic hydrocarbons using Co(II) species at mild conditions. As a result, potential advantages of this 'greener' catalytic method including safer operation, easier separation and purification, higher catalytic activity with selectivity and without using corrosive or oxidation unstable solvent are therefore envisaged.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The acylation of three cellulose samples by acetic anhydride, Ac(2)O, in the solvent system LiCl/N,N-dimethylacetamide, DMAc (4 h, 110 A degrees C), has been revisited in order to investigate the dependence of the reaction efficiency on the structural characteristics of cellulose, and its aggregation in solution. The cellulose samples employed included microcrystalline, MCC; mercerized cotton linters, M-cotton, and mercerized sisal, M-sisal. The reaction efficiency expresses the relationship between the degree of substitution, DS, of the ester obtained, and the molar ratio Ac(2)O/AGU (anhydroglucose unit of the biopolymer); 100% efficiency means obtaining DS = 3 at Ac(2)O/AGU = 3. For all celluloses, the dependence of DS on Ac(2)O/AGU is described by an exponential decay equation: DS = DS(o) - Ae(-[(Ac2O/AGU)/B]); (A) and (B) are regression coefficients, and DS(o) is the calculated maximum degree of substitution, achieved under the conditions of each experiment. Values of (B) are clearly dependent on the cellulose employed: B((M-cotton)) > B((M-sisal)) > B((MCC)); they correlate qualitatively with the degree of polymerization of cellulose, and linearly with the aggregation number, N(agg), of the dissolved biopolymer, as calculated from static light scattering measurements: (B) = 1.709 + 0.034 N(agg). To our knowledge, this is the first report on the latter correlation; it shows the importance of the physical state of dissolved cellulose, and serves to explain, in part, the need to use distinct reaction conditions for MCC and fibrous celluloses, in particular Ac(2)O/AGU, time, temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of alkali treatment on the structural characteristics of cotton linters and sisal cellulose samples have been studied. Mercerization results in a decrease in the indices of crystallinity and the degrees of polymerization, and an increase in the alpha-cellulose contents of the samples. The relevance of the structural properties of cellulose to its dissolution is probed by studying the kinetics of cellulose decrystallization, prior to its solubilization in LiCl/N,N-dimethylacetamide (DMAc). Our data show that the decrystallization rate constants and activation parameters are only slightly dependent on the physico-chemical properties of the starting celluloses. This multi-step reaction is accompanied by a small enthalpy and large, negative, entropy of activation. These results are analyzed in terms of the interactions within the biopolymer chains during decrystallization, as well as those between the two ions of the electrolyte and both DMAc and cellulose.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present study, films based on linter cellulose and chitosan were prepared using an aqueous solution of sodium hydroxide (NaOH)/thiourea as the solvent system. The dissolution process of cellulose and chitosan in NaOH/thiourea aqueous solution was followed by the partial chain depolymerization of both biopolymers, which facilitates their solubilization. Biobased films with different chitosan/cellulose ratios were then elaborated by a casting method and subsequent solvent evaporation. They were characterized by X-ray analysis, scanning electron microscopy (SEM), atomic force microscopy (AFM), thermal analysis, and tests related to tensile strength and biodegradation properties. The SEM images of the biofilms with 50/50 and 60/40 ratio of chitosan/cellulose showed surfaces more wrinkled than the others. The AFM images indicated that higher the content of chitosan in the biobased composite film, higher is the average roughness value. It was inferred through thermal analysis that the thermal stability was affected by the presence of chitosan in the films; the initial temperature of decomposition was shifted to lower levels in the presence of chitosan. Results from the tests for tensile strength indicated that the blending of cellulose and chitosan improved the mechanical properties of the films and that an increase in chitosan content led to production of films with higher tensile strength and percentage of elongation. The degradation study in a simulated soil showed that the higher the crystallinity, the lower is the biodegradation rate.