23 resultados para SMBR-IVCW


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bacterial diversity of activated sludge from submerged membrane bioreactor (SMBR) was investigated. A 16S rDNA clone library was generated, and 150 clones were screened using restriction fragment length polymorphism (RFLP). Of the screened clones, almost full-length 16S rDNA sequences of 64 clones were sequenced. Phylogenetic tree was constructed with a database containing clone sequences from this study and bacterial rDNA sequences from NCB1 for identification purposes. The 90.6% of the clones were affiliated with the two phyla Bacteroidetes (50%) and Proteobacteria (40%), and beta-, -gamma-, and delta-Proteobacteria accounted for 7.8%, 28.1%, and 4.7%, respectively. Minor portions were affiliated with the Actinobacteria and Firmicutes (both 3.1%). Only 6 out of 64 16S rDNA sequences exhibited similarities of more than 97% to classified bacterial species, which indicated that a substantial fraction of the clone sequences were derived from unknown taxa. Rarefaction analysis of operational taxonomic units (orrUs) clusters demonstrated that 150 clones screened were still insufficient to describe the whole bacterial diversity. Measurement of water quality parameter demonstrated that performance of the SMBR maintained high level, and the SMBR system remained stable during this study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of single Cd2+ and Pb2+, and combined Cd2+ and Pb2+ on dehydrogenase activity and polysaccharide content of the substrate biofilms in the integrated vertical-flow constructed wetland (IVCW) were studied. Dehydrogenase activities decreased linearly with the increasing concentrations of Cd2+ and Pb2+ at different times (6, 24, 72, and 120 h). The activities at both 6 and 24 h were significantly higher than that at 72 and 120 h in the case of single and combined treatments. The single Cd2+ and Pb2+ treatments significantly inhibited dehydrogenase activities at concentrations in excess of 20 mu mol/L Cd2+ and 80 mu mol/L Pb2+, respectively. The inhibitory effect of Cd2+ was much greater than that of Pb2+. At the same time, the combined treatment of Cd2+ and Pb2+ Significantly inhibited dehydrogenase activities at all five concentrations studied and the lowest combined concentration was 1.25 mu mol/L Cd2+ and 5 mu mol/L Pb2+. A synergistic effect of Cd2+ and Pb2+ was observed. On the other hand, polysaccharide contents varied unpredictably with the increasing concentrations of Cd2+ and Pb2+ and extended experimental time. There were no significant statistical differences within the range of concentration and time studied, whether singly or in combination. These results implied that the effects of heavy metals on biofilms should be a concern for the operation and maintenance of constructed wetlands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A L9 orthogonal array design involving 3 factors (C6H12O6, KNO3 and NaH2PO4) and 3 levels for each (C6H12O6: 0.2, 0.4 or 0.8 g/L; KNO3: 0.4, 0.8 or 1.6 g/L, NaH2PO4: 0.05, 0.1 or 0.2 g/L), was used to study the effects of nutrients on dehydrogenase activity and polysaccharide content of substrate biofilms in the integrated vertical-flow constructed wetland (IVCW). Results showed that C6H12O6 and KNO3 were the main factors for dehydrogenase activity and polysaccharide content of biofilms, respectively. The combinations of three nutrients at different concentrations had different effects on dehydrogenase activity and polysaccharide content of biofilms. The optimal combination for dehydrogenase activity was obtained by locating the concentrations Of C6H12O6, KNO3 and NaH2PO4 at 0.2, 0.8 and 0.05 g, and the optimal combination for polysaccharide content was obtained by locating the concentrations Of C6H12O6, KNO3 and NaH2PO4 at 0.2, 0.4 and 0.2 g/L, respectively. The corresponding maximum activity and polysaccharide content were 5.40 mu g TF/g substrate/12 h and 3454.6 mu g/g substrate, respectively. These results would provide the laboratory foundation for optimizing the purification function of the wetland systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, optimization of operational conditions of a submerged membrane bioreactor treating municipal waste-water was studied. Mixed liquid suspended solid (MLSS), membrane flux (J(v)), aeration (Q), ratio of pumping, time to break time (t(p)/t(b)), and ratio of up flow area to down flow area (A Ad) were chosen as the easily manipulable parameters to study their effects on removal efficiency and membrane fouling. Totally, 16 different runs were designed to compare and select the best combination of the 5 parameters. The results showed that the optimal operational conditions were MLSS = 7g(.)L(-1), J(v) = 10L(.)m(-2.)h(-1), Q = 6 m(3.)h(-1), t(p)/t(b)= 4 min/1 min, and A(r)/A(d) = 1.7 m(2)/m(2). Under such conditions, the SMBR could achieve a double win of high removal efficiency and low membrane fouling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este documento contiene el Diseño de Aplicación de la Norma internacional ISO 26000:2010 Modelo de Gestión de Responsabilidad Social en la Fundación Hospital San Carlos, Bogotá - Colombia, en el que se incluye la herramienta que se diseñó para el desarrollo del estudio con base en los requisitos aplicables de la norma que orientan a un comportamiento socialmente responsable; así como el diagnóstico inicial que se realizó en la organización objeto de estudio desde una perspectiva cualicuantitativa, frente a los lineamientos que la norma presenta como elementos esenciales: Principios y Materias Fundamentales. De igual manera y acorde a la metodología que se definió para el estudio que fue observacional de corte descriptivo cualitativo interpretativo, se muestra la matriz DOFA de la institución según el diagnóstico, con el respectivo análisis e interpretación derivados de los hallazgos evidenciados en el proceso de evaluación; en el cual se identificó que la Fundación Hospital San Carlos cumple con un 47,97% de los requerimientos de responsabilidad social según la norma ISO 26000:2010, con el logro de 71 criterios de los 148 evaluados y aplicables a la organización, observándose especial fragilidad en los componentes Fortalecimiento de la Comunidad, Prácticas Laborales, y Transparencia, con un cumplimiento que estuvo por debajo del 50%. Por otra parte y como propósito fundamental del estudio se presenta el diseño propuesto para la aplicación de la norma ISO 26000:2010 en la IPS Fundación Hospital San Carlos, en el cual se registran estrategias y mecanismos que los autores sugieren y recomiendan se deben trabajar para que la implementación de este modelo internacional de Responsabilidad Social, se haga de una manera pragmática y sencilla, que lo conviertan además en un diseño de aplicación de la norma que pueda ser referenciado por organizaciones del sector salud o no, interesadas en trabajar en responsabilidad social empresarial. Para la estructura del diseño de aplicación de la norma y conforme el estudio realizado, se plantean 7 pasos que deben seguir las organizaciones de manera sistemática, metódica y ordenada: comprender la responsabilidad social; reconocer su Responsabilidad Social; levantar una matriz DOFA con base en un diagnóstico institucional; planificar; estructurar y definir de la Responsabilidad Social dentro de la organización; sensibilizar, divulgar y capacitar los estándares de la Norma ISO 26000:2010; documentar el Modelo de Responsabilidad Social; Implementar el modelo de Responsabilidad Social; y monitorear el modelo mediante un mecanismo que integre un sistema de auditoría integral y la revisión de gerencia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A three stage-treatment of domestic wastewater including anaerobic, anoxic and aerobic phases is employed in this study while a clarifier unit is replaced with a submerged membrane in the aerobic unit. The effects of operational parameters on the performance of a pilot scale submerged membrane bioreactor (SMBR) namely hydraulic retention time (HRT), ratio of return activated sludge (QRS), ratio of internal recycle (QIR), solid retention time (SRT) and dissolved oxygen (DO) are evaluated by simulations, using a hybrid model composed of TUDP model, oxygen transfer model, biofouling model due to extra-cellular polymeric substances (EPS) and turbulent shear model. The results showed that anaerobic HRT of 3 hours, anoxic HRT of 6 hours, QRS of 20% and QIR of 300 % are satisfactory in obtaining a high removal efficiency (>90%) of COD, NH4-N, P04-P as well as a less sludge production. An increase of sludge production causes an increase in EPS, which fouls the membrane surface and increase the cleaning cycle of membrane. Operation of 5MBR system at 2 mg/I of DO and 30 days of SRT can extend the membrane cleaning cycle dramatically. The membrane cleaning cycle however is strongly dependent on the initial and terminal specific fluxes and displays inverse power relationships to those fluxes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Discharging the nutrient rich aquaculture effluents into inland water bodies and oceans is becoming a serious concern due to the adverse effect that brings in the form of eutrophication and subsequent damages to those waters. A laboratory scale biological reactor consisting of a denitrifying compartment followed by a submerged membrane bioreactor (SMBR) compartment was used to treat 40 L d−1 of aquaculture effluent with an average concentration of 74 mg L−1 nitrate (NO3 − ). Sugar was added to the aquaculture effluent in order that to enter into the denitrifying compartment at a carbon: nitrogen ratio (C:N) of 2:1 and 4:1. A hollow fibre membrane with a pore size of 0.4 μm and a filtration area of 0.20 m2 was used in the SMBR and was operated at an average flux of 0.20 m3 m−2 d−1. An intermittent suction period of 12 min followed by a relaxation period of 3 min was maintained in the SMBR throughout the experiment. Different aeration rates of 1, 3, 5 and 10 Lpm were applied to the SMBR to determine the rate of membrane fouling and 5 Lpm aeration rate was found to be optimum with respect to the rate of fouling of membrane at a C:N ratio of 4:1. The average rate of fouling at 1, 3, 5 and 10 Lpm were 1.17, 0.70, 0.48 and 0.52 kPa d−1, respectively. The increase in the rate of fouling when the aeration was increased from 5 to 10 Lpm may be due to the breakage of suspended particles into finer particles which could have increased the fouling of membrane. It was also found that increasing the C:N ratio from 2:1 to 4:1 resulted in more cake being formed on the membrane surface as well as an increase in the reduction of NO3 − from 64% to 78%. Preliminary calculations show that 2.4 to 3.2 g of suspended solids could be accumulated per square meter of membrane surface before physical cleaning of membrane is required (at a transmembrane pressure of 20 kPa).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gas phase equilibria Ba + LnX = BaX + Ln (Ln = Sm, Eu, Yb; X = Cl, Br, I) were investigated by Knudsen effusion mass spectrometry using a low energy of ionizing electrons to avoid fragmentation processes. The BaX molecules were used as references with well-established bond energies. The atomization enthalpies ΔatH0° of the LnX molecules were determined to be 427 ± 9 (SmCl), 409 ± 9 (EuCl), 366 ± 9 (YbCl), 360 ± 10 (SmBr), 356 ± 13 (EuBr), 316 ± 9 (YbBr), 317 ± 10 (SmI), 293 ± 10 (EuI), and 283 ± 10 (YbI) kJ·mol−1.