986 resultados para SELF-SIMILARITY
Resumo:
Advances in technology have produced more and more intricate industrial systems, such as nuclear power plants, chemical centers and petroleum platforms. Such complex plants exhibit multiple interactions among smaller units and human operators, rising potentially disastrous failure, which can propagate across subsystem boundaries. This paper analyzes industrial accident data-series in the perspective of statistical physics and dynamical systems. Global data is collected from the Emergency Events Database (EM-DAT) during the time period from year 1903 up to 2012. The statistical distributions of the number of fatalities caused by industrial accidents reveal Power Law (PL) behavior. We analyze the evolution of the PL parameters over time and observe a remarkable increment in the PL exponent during the last years. PL behavior allows prediction by extrapolation over a wide range of scales. In a complementary line of thought, we compare the data using appropriate indices and use different visualization techniques to correlate and to extract relationships among industrial accident events. This study contributes to better understand the complexity of modern industrial accidents and their ruling principles.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
[EN]This work makes an extensive experimental study of smile detection testing the Local Binary Patterns (LBP) combined with self similarity (LAC) as main descriptors of the image, along with the powerful Support Vector Machines classifier. Results show that error rates can be acceptable and the self similarity approach for the detection of smiles is suitable for real-time interaction, although there is still room for improvement.
Resumo:
The physical appearance of granular media suggests the existence of geometrical scale invariance. The paper discuss how this physico-empirical property can be mathematically encoded leading to different generative models: a smooth one encoded by a differential equation and another encoded by an equation coming from a measure theoretical property.
Resumo:
The aerodynamics of the blast wave produced by laser ablation is studied using the piston analogy. The unsteady one-dimensional gasdynamic equations governing the flow an solved under assumption of self-similarity. The solutions are utilized to obtain analytical expressions for the velocity, density, pressure and temperature distributions. The results predict. all the experimentally observed features of the laser produced blast waves.
Resumo:
The longitudinal fluctuating velocity of a turbulent boundary layer was measured in a water channel at a moderate Reynolds number. The extended self-similar scaling law of structure function proposed by Benzi was verified. The longitudinal fluctuating velocity, in the turbulent boundary layer was decomposed into many multi-scale eddy structures by wavelet transform. The extended self-similar scaling law of structure function for each scale eddy velocity was investigated. The conclusions are I) The statistical properties of turbulence could be self-similar not only at high Reynolds number, but also at moderate and low Reynolds number, and they could be characterized by the same set of scaling exponents xi (1)(n) = n/3 and xi (2)(n) = n/3 of the fully developed regime. 2) The range of scales where the extended self-similarity valid is much larger than the inertial range and extends far deep into the dissipation range,vith the same set of scaling exponents. 3) The extended selfsimilarity is applicable not only for homogeneous turbulence, but also for shear turbulence such as turbulent boundary layers.
Resumo:
Recent measurements of local-area and wide-area traffic have shown that network traffic exhibits variability at a wide range of scales self-similarity. In this paper, we examine a mechanism that gives rise to self-similar network traffic and present some of its performance implications. The mechanism we study is the transfer of files or messages whose size is drawn from a heavy-tailed distribution. We examine its effects through detailed transport-level simulations of multiple TCP streams in an internetwork. First, we show that in a "realistic" client/server network environment i.e., one with bounded resources and coupling among traffic sources competing for resources the degree to which file sizes are heavy-tailed can directly determine the degree of traffic self-similarity at the link level. We show that this causal relationship is not significantly affected by changes in network resources (bottleneck bandwidth and buffer capacity), network topology, the influence of cross-traffic, or the distribution of interarrival times. Second, we show that properties of the transport layer play an important role in preserving and modulating this relationship. In particular, the reliable transmission and flow control mechanisms of TCP (Reno, Tahoe, or Vegas) serve to maintain the long-range dependency structure induced by heavy-tailed file size distributions. In contrast, if a non-flow-controlled and unreliable (UDP-based) transport protocol is used, the resulting traffic shows little self-similar characteristics: although still bursty at short time scales, it has little long-range dependence. If flow-controlled, unreliable transport is employed, the degree of traffic self-similarity is positively correlated with the degree of throttling at the source. Third, in exploring the relationship between file sizes, transport protocols, and self-similarity, we are also able to show some of the performance implications of self-similarity. We present data on the relationship between traffic self-similarity and network performance as captured by performance measures including packet loss rate, retransmission rate, and queueing delay. Increased self-similarity, as expected, results in degradation of performance. Queueing delay, in particular, exhibits a drastic increase with increasing self-similarity. Throughput-related measures such as packet loss and retransmission rate, however, increase only gradually with increasing traffic self-similarity as long as reliable, flow-controlled transport protocol is used.
Resumo:
Quantum molecular similarity (QMS) techniques are used to assess the response of the electron density of various small molecules to application of a static, uniform electric field. Likewise, QMS is used to analyze the changes in electron density generated by the process of floating a basis set. The results obtained show an interrelation between the floating process, the optimum geometry, and the presence of an external field. Cases involving the Le Chatelier principle are discussed, and an insight on the changes of bond critical point properties, self-similarity values and density differences is performed
Resumo:
We study the limit behaviour of the sequence of extremal processes under a regularity condition on the norming sequence ζn and asymptotic negligibility of the max-increments of Yn.
Resumo:
Two-stroke outboard boat engines using total loss lubrication deposit a significant proportion of their lubricant and fuel directly into the water. The purpose of this work is to document the velocity and concentration field characteristics of a submerged swirling water jet emanating from a propeller in order to provide information on its fundamental characteristics. Measurements of the velocity and concentration field were performed in a turbulent jet generated by a model boat propeller (0.02 m diameter) operating at 1500 rpm and 3000 rpm. The measurements were carried out in the Zone of Established Flow up to 50 propeller diameters downstream of the propeller. Both the mean axial velocity profile and the mean concentration profile showed self-similarity. Further, the stand deviation growth curve was linear. The effects of propeller speed and dye release location were also investigated.
Resumo:
Two-stroke outboard boat engines using total loss lubrication deposit a significant proportion of their lubricant and fuel directly into the water. The purpose of this work is to document the velocity and concentration field characteristics of a submerged swirling water jet emanating from a propeller in order to provide information on its fundamental characteristics. The properties of the jet were examined far enough downstream to be relevant to the eventual modelling of the mixing problem. Measurements of the velocity and concentration field were performed in a turbulent jet generated by a model boat propeller (0.02 m diameter) operating at 1500 rpm and 3000 rpm in a weak co-flow of 0.04 m/s. The measurements were carried out in the Zone of Established Flow up to 50 propeller diameters downstream of the propeller, which was placed in a glass-walled flume 0.4 m wide with a free surface depth of 0.15 m. The jet and scalar plume development were compared to that of a classical free round jet. Further, results pertaining to radial distribution, self similarity, standard deviation growth, maximum value decay and integral fluxes of velocity and concentration were presented and fitted with empirical correlations. Furthermore, propeller induced mixing and pollutant source concentration from a two-stroke engine were estimated.
Resumo:
Experimental results for a reactive non-buoyant plume of nitric oxide (NO) in a turbulent grid flow doped with ozone (O3) are presented. The Damkohler number (Nd) for the experiment is of order unity indicating the turbulence and chemistry have similar timescales and both affect the chemical reaction rate. Continuous measurements of two components of velocity using hot-wire anemometry and the two reactants using chemiluminescent analysers have been made. A spatial resolution for the reactants of four Kolmogorov scales has been possible because of the novel design of the experiment. Measurements at this resolution for a reactive plume are not found in the literature. The experiment has been conducted relatively close to the grid in the region where self-similarity of the plume has not yet developed. Statistics of a conserved scalar, deduced from both reactive and non-reactive scalars by conserved scalar theory, are used to establish the mixing field of the plume, which is found to be consistent with theoretical considerations and with those found by other investigators in non-reative flows. Where appropriate the reactive species means and higher moments, probability density functions, joint statistics and spectra are compared with their respective frozen, equilibrium and reaction-dominated limits deduced from conserved scalar theory. The theoretical limits bracket reactive scalar statistics where this should be so according to conserved scalar theory. Both reactants approach their equilibrium limits with greater distance downstream. In the region of measurement, the plume reactant behaves as the reactant not in excess and the ambient reactant behaves as the reactant in excess. The reactant covariance lies outside its frozen and equilibrium limits for this value of Vd. The reaction rate closure of Toor (1969) is compared with the measured reaction rate. The gradient model is used to obtain turbulent diffusivities from turbulent fluxes. Diffusivity of a non-reactive scalar is found to be close to that measured in non-reactive flows by others.
Resumo:
Complex networks have been studied extensively due to their relevance to many real-world systems such as the world-wide web, the internet, biological and social systems. During the past two decades, studies of such networks in different fields have produced many significant results concerning their structures, topological properties, and dynamics. Three well-known properties of complex networks are scale-free degree distribution, small-world effect and self-similarity. The search for additional meaningful properties and the relationships among these properties is an active area of current research. This thesis investigates a newer aspect of complex networks, namely their multifractality, which is an extension of the concept of selfsimilarity. The first part of the thesis aims to confirm that the study of properties of complex networks can be expanded to a wider field including more complex weighted networks. Those real networks that have been shown to possess the self-similarity property in the existing literature are all unweighted networks. We use the proteinprotein interaction (PPI) networks as a key example to show that their weighted networks inherit the self-similarity from the original unweighted networks. Firstly, we confirm that the random sequential box-covering algorithm is an effective tool to compute the fractal dimension of complex networks. This is demonstrated on the Homo sapiens and E. coli PPI networks as well as their skeletons. Our results verify that the fractal dimension of the skeleton is smaller than that of the original network due to the shortest distance between nodes is larger in the skeleton, hence for a fixed box-size more boxes will be needed to cover the skeleton. Then we adopt the iterative scoring method to generate weighted PPI networks of five species, namely Homo sapiens, E. coli, yeast, C. elegans and Arabidopsis Thaliana. By using the random sequential box-covering algorithm, we calculate the fractal dimensions for both the original unweighted PPI networks and the generated weighted networks. The results show that self-similarity is still present in generated weighted PPI networks. This implication will be useful for our treatment of the networks in the third part of the thesis. The second part of the thesis aims to explore the multifractal behavior of different complex networks. Fractals such as the Cantor set, the Koch curve and the Sierspinski gasket are homogeneous since these fractals consist of a geometrical figure which repeats on an ever-reduced scale. Fractal analysis is a useful method for their study. However, real-world fractals are not homogeneous; there is rarely an identical motif repeated on all scales. Their singularity may vary on different subsets; implying that these objects are multifractal. Multifractal analysis is a useful way to systematically characterize the spatial heterogeneity of both theoretical and experimental fractal patterns. However, the tools for multifractal analysis of objects in Euclidean space are not suitable for complex networks. In this thesis, we propose a new box covering algorithm for multifractal analysis of complex networks. This algorithm is demonstrated in the computation of the generalized fractal dimensions of some theoretical networks, namely scale-free networks, small-world networks, random networks, and a kind of real networks, namely PPI networks of different species. Our main finding is the existence of multifractality in scale-free networks and PPI networks, while the multifractal behaviour is not confirmed for small-world networks and random networks. As another application, we generate gene interactions networks for patients and healthy people using the correlation coefficients between microarrays of different genes. Our results confirm the existence of multifractality in gene interactions networks. This multifractal analysis then provides a potentially useful tool for gene clustering and identification. The third part of the thesis aims to investigate the topological properties of networks constructed from time series. Characterizing complicated dynamics from time series is a fundamental problem of continuing interest in a wide variety of fields. Recent works indicate that complex network theory can be a powerful tool to analyse time series. Many existing methods for transforming time series into complex networks share a common feature: they define the connectivity of a complex network by the mutual proximity of different parts (e.g., individual states, state vectors, or cycles) of a single trajectory. In this thesis, we propose a new method to construct networks of time series: we define nodes by vectors of a certain length in the time series, and weight of edges between any two nodes by the Euclidean distance between the corresponding two vectors. We apply this method to build networks for fractional Brownian motions, whose long-range dependence is characterised by their Hurst exponent. We verify the validity of this method by showing that time series with stronger correlation, hence larger Hurst exponent, tend to have smaller fractal dimension, hence smoother sample paths. We then construct networks via the technique of horizontal visibility graph (HVG), which has been widely used recently. We confirm a known linear relationship between the Hurst exponent of fractional Brownian motion and the fractal dimension of the corresponding HVG network. In the first application, we apply our newly developed box-covering algorithm to calculate the generalized fractal dimensions of the HVG networks of fractional Brownian motions as well as those for binomial cascades and five bacterial genomes. The results confirm the monoscaling of fractional Brownian motion and the multifractality of the rest. As an additional application, we discuss the resilience of networks constructed from time series via two different approaches: visibility graph and horizontal visibility graph. Our finding is that the degree distribution of VG networks of fractional Brownian motions is scale-free (i.e., having a power law) meaning that one needs to destroy a large percentage of nodes before the network collapses into isolated parts; while for HVG networks of fractional Brownian motions, the degree distribution has exponential tails, implying that HVG networks would not survive the same kind of attack.