A study for the self similarity smile detection


Autoria(s): Freire-Obregón, David; Antón Canalís, Luis; Castrillón-Santana, Modesto
Data(s)

08/04/2016

08/04/2016

2009

Resumo

<p>[EN]This work makes an extensive experimental study of smile detection testing the Local Binary Patterns (LBP) combined with self similarity (LAC) as main descriptors of the image, along with the powerful Support Vector Machines classifier. Results show that error rates can be acceptable and the self similarity approach for the detection of smiles is suitable for real-time interaction, although there is still room for improvement.</p>

Identificador

http://hdl.handle.net/10553/16403

722129

<p><a href="http://dx.doi.org/10.1007/978-3-642-04391-8_13" target="_blank">10.1007/978-3-642-04391-8_13</a></p>

Idioma(s)

eng

Direitos

info:eu-repo/semantics/openAccess

Fonte

<p>Biometric ID Management and Multimodal Communication. Joint COST 2101 and 2102 International Conference. Proceedigns. Berlin: Springer, 2009 (Lecture Notes in Computer Science, ISSN 0302-9743; vol. 5707,  pp 97-104) ISBN 978-3-642-04390-1. Online ISBN 978-3-642-04391-8</p>

Palavras-Chave #120304 Inteligencia artificial
Tipo

info:eu-repo/semantics/conferenceObject