981 resultados para Robustness Analysis


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nós analisamos o efeito da emenda constitucional 72/13 no Brasil, que igualou direitos trabalhistas de empregadas domésticas a aqueles de outros empregados. Mostramos que, após a legislação, uma considerável cobertura midiática e um interesse público intensificado aumentou o conhecimento geral de direitos trabalhistas de empregadas domésticas. Como consequência, o não-seguimento de legislações trabalhistas no setor de serviços domésticos ficou mais difícil. Ao mesmo tempo, a necessidade de regulamentar adicionalmente a emenda fez com que custos trabalhistas ficassem praticamente inalterados. Usando uma abordagem de diferença-em-diferenças que compara ocupações selecionadas ao longo do tempo, mostramos que a emenda -- e a discussão que ela causou -- levou a um aumento na formalização e nos salários de empregados domésticos. Então, usando a heterogeneidade do impacto da emenda em grupos demográficos, nossos resultados mostram que emprego doméstico foi reduzido e que mulheres pouco qualificadas saíram força de trabalho e foram para empregos de menor qualidade. Testes de placebo e análises de robustez indicam que nossos resultados não são explicados por diversas interpretações alternativas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work develops a robustness analysis with respect to the modeling errors, being applied to the strategies of indirect control using Artificial Neural Networks - ANN s, belong to the multilayer feedforward perceptron class with on-line training based on gradient method (backpropagation). The presented schemes are called Indirect Hybrid Control and Indirect Neural Control. They are presented two Robustness Theorems, being one for each proposed indirect control scheme, which allow the computation of the maximum steady-state control error that will occur due to the modeling error what is caused by the neural identifier, either for the closed loop configuration having a conventional controller - Indirect Hybrid Control, or for the closed loop configuration having a neural controller - Indirect Neural Control. Considering that the robustness analysis is restrict only to the steady-state plant behavior, this work also includes a stability analysis transcription that is suitable for multilayer perceptron class of ANN s trained with backpropagation algorithm, to assure the convergence and stability of the used neural systems. By other side, the boundness of the initial transient behavior is assured by the assumption that the plant is BIBO (Bounded Input, Bounded Output) stable. The Robustness Theorems were tested on the proposed indirect control strategies, while applied to regulation control of simulated examples using nonlinear plants, and its results are presented

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this Thesis, the development of the dynamic model of multirotor unmanned aerial vehicle with vertical takeoff and landing characteristics, considering input nonlinearities and a full state robust backstepping controller are presented. The dynamic model is expressed using the Newton-Euler laws, aiming to obtain a better mathematical representation of the mechanical system for system analysis and control design, not only when it is hovering, but also when it is taking-off, or landing, or flying to perform a task. The input nonlinearities are the deadzone and saturation, where the gravitational effect and the inherent physical constrains of the rotors are related and addressed. The experimental multirotor aerial vehicle is equipped with an inertial measurement unit and a sonar sensor, which appropriately provides measurements of attitude and altitude. A real-time attitude estimation scheme based on the extended Kalman filter using quaternions was developed. Then, for robustness analysis, sensors were modeled as the ideal value with addition of an unknown bias and unknown white noise. The bounded robust attitude/altitude controller were derived based on globally uniformly practically asymptotically stable for real systems, that remains globally uniformly asymptotically stable if and only if their solutions are globally uniformly bounded, dealing with convergence and stability into a ball of the state space with non-null radius, under some assumptions. The Lyapunov analysis technique was used to prove the stability of the closed-loop system, compute bounds on control gains and guaranteeing desired bounds on attitude dynamics tracking errors in the presence of measurement disturbances. The controller laws were tested in numerical simulations and in an experimental hexarotor, developed at the UFRN Robotics Laboratory

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article analyses the trend of unfair inequality in Brazil (1995-2009) using a nonparametric approach to estimate the income function. The entropy metrics introduced by Li, Maasoumi and Racine (2009) are used to quantify income differences separately for each effort variable. A Gini coefficient of unfair inequality is calculated, based on the fitted values of the non-parametric estimation; and the robustness of the estimations, including circumstantial variables, is analysed. The trend of the entropies demonstrated a reduction in the income differential caused by education. The variables “hours worked” and “labour-market status” contribute significantly to explaining wage differences imputed to individual effort; but the migratory variable had little explanatory power. Lastly, the robustness analysis demonstrated the plausibility of the results obtained at each stage of the empirical work.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The goal of this paper is to present a methodology for quality control of horizontal geodetic networks through robustness and covariance analysis. In the proposed methodology, the positional accuracy of each point is estimated by a possible bias in their position (based on robustness analysis), in addition to its own positional precision (uncertainty) (through covariance analysis), being a measure independently from the choice of the datum. Besides presenting the theoretical development of the method, its application is demonstrated in a numerical example. The results indicate that, in general, the greater the distance of an unknown point to the control(s) point(s) of the network, the greater is the propagation of random errors on this unknown point, and the smaller the number of redundant observations around a unknown point, the greater the influence of possible (undetected) non-random errors on this point.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Currently, the need of reliable coordinates has been one of the main objectives of the scientific and practice community. Thus, the robustness analysis of a geodetic network, aims, at analyzing if the network is robust or not, based on the maximum undetectable errors. The network will be robust if the influence of these errors is small, otherwise it is weak, or not robust. This analysis is performed with the merger of two techniques, one which deals with the statistical analysis of reliability and the other one with the geometric strength analysis. The reliability analysis will provide the maximum error that cannot be detected by tests, after the adjustment. After finding these errors, the geometric strength analysis will determine the potential strain that the network will have, based on these errors. It is emphasized that the robustness analysis doesn't depend of the datum, reflecting only the geometry of the network and the accuracy of the observations (VANÌCEK et al., 2001). Therefore, this work aims at contributing to the scientific research on geodetic networks, checking the same, based on their geometry and observations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Plackett-Burman experimental design was applied for the robustness assessment of GC×GC-qMS (Comprehensive Two-Dimensional Gas Chromatography with Fast Quadrupolar Mass Spectrometric Detection) in quantitative and qualitative analysis of volatiles compounds from chocolate samples isolated by headspace solid-phase microextraction (HS-SPME). The influence of small changes around the nominal level of six factors deemed as important on peak areas (carrier gas flow rate, modulation period, temperature of ionic source, MS photomultiplier power, injector temperature and interface temperature) and of four factors considered as potentially influential on spectral quality (minimum and maximum limits of the scanned mass ranges, ions source temperature and photomultiplier power). The analytes selected for the study were 2,3,5-trimethylpyrazine, 2-octanone, octanal, 2-pentyl-furan, 2,3,5,6-tetramethylpyrazine, and 2-nonanone e nonanal. The factors pointed out as important on the robustness of the system were photomultiplier power for quantitative analysis and lower limit of mass scanning range for qualitative analysis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Standard methods for the analysis of linear latent variable models oftenrely on the assumption that the vector of observed variables is normallydistributed. This normality assumption (NA) plays a crucial role inassessingoptimality of estimates, in computing standard errors, and in designinganasymptotic chi-square goodness-of-fit test. The asymptotic validity of NAinferences when the data deviates from normality has been calledasymptoticrobustness. In the present paper we extend previous work on asymptoticrobustnessto a general context of multi-sample analysis of linear latent variablemodels,with a latent component of the model allowed to be fixed across(hypothetical)sample replications, and with the asymptotic covariance matrix of thesamplemoments not necessarily finite. We will show that, under certainconditions,the matrix $\Gamma$ of asymptotic variances of the analyzed samplemomentscan be substituted by a matrix $\Omega$ that is a function only of thecross-product moments of the observed variables. The main advantage of thisis thatinferences based on $\Omega$ are readily available in standard softwareforcovariance structure analysis, and do not require to compute samplefourth-order moments. An illustration with simulated data in the context ofregressionwith errors in variables will be presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Occupational exposure modeling is widely used in the context of the E.U. regulation on the registration, evaluation, authorization, and restriction of chemicals (REACH). First tier tools, such as European Centre for Ecotoxicology and TOxicology of Chemicals (ECETOC) targeted risk assessment (TRA) or Stoffenmanager, are used to screen a wide range of substances. Those of concern are investigated further using second tier tools, e.g., Advanced REACH Tool (ART). Local sensitivity analysis (SA) methods are used here to determine dominant factors for three models commonly used within the REACH framework: ECETOC TRA v3, Stoffenmanager 4.5, and ART 1.5. Based on the results of the SA, the robustness of the models is assessed. For ECETOC, the process category (PROC) is the most important factor. A failure to identify the correct PROC has severe consequences for the exposure estimate. Stoffenmanager is the most balanced model and decision making uncertainties in one modifying factor are less severe in Stoffenmanager. ART requires a careful evaluation of the decisions in the source compartment since it constitutes ∼75% of the total exposure range, which corresponds to an exposure estimate of 20-22 orders of magnitude. Our results indicate that there is a trade off between accuracy and precision of the models. Previous studies suggested that ART may lead to more accurate results in well-documented exposure situations. However, the choice of the adequate model should ultimately be determined by the quality of the available exposure data: if the practitioner is uncertain concerning two or more decisions in the entry parameters, Stoffenmanager may be more robust than ART.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Whilst estimation of the marginal (total) causal effect of a point exposure on an outcome is arguably the most common objective of experimental and observational studies in the health and social sciences, in recent years, investigators have also become increasingly interested in mediation analysis. Specifically, upon establishing a non-null total effect of the exposure, investigators routinely wish to make inferences about the direct (indirect) pathway of the effect of the exposure not through (through) a mediator variable that occurs subsequently to the exposure and prior to the outcome. Although powerful semiparametric methodologies have been developed to analyze observational studies, that produce double robust and highly efficient estimates of the marginal total causal effect, similar methods for mediation analysis are currently lacking. Thus, this paper develops a general semiparametric framework for obtaining inferences about so-called marginal natural direct and indirect causal effects, while appropriately accounting for a large number of pre-exposure confounding factors for the exposure and the mediator variables. Our analytic framework is particularly appealing, because it gives new insights on issues of efficiency and robustness in the context of mediation analysis. In particular, we propose new multiply robust locally efficient estimators of the marginal natural indirect and direct causal effects, and develop a novel double robust sensitivity analysis framework for the assumption of ignorability of the mediator variable.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article evaluates an authentication technique for mobiles based on gestures. Users create a remindful identifying gesture to be considered as their in-air signature. This work analyzes a database of 120 gestures of different vulnerability, obtaining an Equal Error Rate (EER) of 9.19% when robustness of gestures is not verified. Most of the errors in this EER come from very simple and easily forgeable gestures that should be discarded at enrollment phase. Therefore, an in-air signature robustness verification system using Linear Discriminant Analysis is proposed to infer automatically whether the gesture is secure or not. Different configurations have been tested obtaining a lowest EER of 4.01% when 45.02% of gestures were discarded, and an optimal compromise of EER of 4.82% when 19.19% of gestures were automatically rejected.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Preliminary research demonstrated the EmotiBlog annotated corpus relevance as a Machine Learning resource to detect subjective data. In this paper we compare EmotiBlog with the JRC Quotes corpus in order to check the robustness of its annotation. We concentrate on its coarse-grained labels and carry out a deep Machine Learning experimentation also with the inclusion of lexical resources. The results obtained show a similarity with the ones obtained with the JRC Quotes corpus demonstrating the EmotiBlog validity as a resource for the SA task.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

EmotiBlog is a corpus labelled with the homonymous annotation schema designed for detecting subjectivity in the new textual genres. Preliminary research demonstrated its relevance as a Machine Learning resource to detect opinionated data. In this paper we compare EmotiBlog with the JRC corpus in order to check the EmotiBlog robustness of annotation. For this research we concentrate on its coarse-grained labels. We carry out a deep ML experimentation also with the inclusion of lexical resources. The results obtained show a similarity with the ones obtained with the JRC demonstrating the EmotiBlog validity as a resource for the SA task.