990 resultados para Riemann problem


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The elastic plane problem of collinear rigid lines under arbitrary loads is dealt with. Applying the Riemann-Schwarz symmetry principle integrated with the analysis of the singularity of complex stress functions, the general formulation is presented, and the closed-form solutions to several problems of practical importance are given, which include some published results as the special cases. Lastly the stress distribution in the immediate vicinity of the rigid line end is examined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop a logarithmic potential theory on Riemann surfaces which generalizes logarithmic potential theory on the complex plane. We show the existence of an equilibrium measure and examine its structure. This leads to a formula for the structure of the equilibrium measure which is new even in the plane. We then use our results to study quadrature domains, Laplacian growth, and Coulomb gas ensembles on Riemann surfaces. We prove that the complement of the support of the equilibrium measure satisfies a quadrature identity. Furthermore, our setup allows us to naturally realize weak solutions of Laplacian growth (for a general time-dependent source) as an evolution of the support of equilibrium measures. When applied to the Riemann sphere this approach unifies the known methods for generating interior and exterior Laplacian growth. We later narrow our focus to a special class of quadrature domains which we call Algebraic Quadrature Domains. We show that many of the properties of quadrature domains generalize to this setting. In particular, the boundary of an Algebraic Quadrature Domain is the inverse image of a planar algebraic curve under a meromorphic function. This makes the study of the topology of Algebraic Quadrature Domains an interesting problem. We briefly investigate this problem and then narrow our focus to the study of the topology of classical quadrature domains. We extend the results of Lee and Makarov and prove (for n ≥ 3) c ≤ 5n-5, where c and n denote the connectivity and degree of a (classical) quadrature domain. At the same time we obtain a new upper bound on the number of isolated points of the algebraic curve corresponding to the boundary and thus a new upper bound on the number of special points. In the final chapter we study Coulomb gas ensembles on Riemann surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We solve an initial-boundary problem for the Klein-Gordon equation on the half line using the Riemann-Hilbert approach to solving linear boundary value problems advocated by Fokas. The approach we present can be also used to solve more complicated boundary value problems for this equation, such as problems posed on time-dependent domains. Furthermore, it can be extended to treat integrable nonlinearisations of the Klein-Gordon equation. In this respect, we briefly discuss how our results could motivate a novel treatment of the sine-Gordon equation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A finite-difference scheme based on flux difference splitting is presented for the solution of the two-dimensional shallow-water equations of ideal fluid flow. A linearised problem, analogous to that of Riemann for gasdynamics, is defined and a scheme, based on numerical characteristic decomposition, is presented for obtaining approximate solutions to the linearised problem. The method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second-order scheme which avoids non-physical, spurious oscillations. An extension to the two-dimensional equations with source terms, is included. The scheme is applied to a dam-break problem with cylindrical symmetry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analysis of various arithmetic averaging procedures for approximate Riemann solvers is made with a specific emphasis on efficiency and a jump capturing property. The various alternatives discussed are intended for future work, as well as the more immediate problem of steady, supercritical free-surface flows. Numerical results are shown for two test problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is a well known result that the Feynman's path integral (FPI) approach to quantum mechanics is equivalent to Schrodinger's equation when we use as integration measure the Wiener-Lebesgue measure. This results in little practical applicability due to the great algebraic complexibity involved, and the fact is that almost all applications of (FPI) - ''practical calculations'' - are done using a Riemann measure. In this paper we present an expansion to all orders in time of FPI in a quest for a representation of the latter solely in terms of differentiable trajetories and Riemann measure. We show that this expansion agrees with a similar expansion obtained from Schrodinger's equation only up to first order in a Riemann integral context, although by chance both expansions referred to above agree for the free. particle and harmonic oscillator cases. Our results permit, from the mathematical point of view, to estimate the many errors done in ''practical'' calculations of the FPI appearing in the literature and, from the physical point of view, our results supports the stochastic approach to the problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mathematics Subject Classification 2010: 35M10, 35R11, 26A33, 33C05, 33E12, 33C20.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we focus on a Riemann–Hilbert boundary value problem (BVP) with a constant coefficients for the poly-Hardy space on the real unit ball in higher dimensions. We first discuss the boundary behaviour of functions in the poly-Hardy class. Then we construct the Schwarz kernel and the higher order Schwarz operator to study Riemann–Hilbert BVPs over the unit ball for the poly- Hardy class. Finally, we obtain explicit integral expressions for their solutions. As a special case, monogenic signals as elements in the Hardy space over the unit sphere will be reconstructed in the case of boundary data given in terms of functions having values in a Clifford subalgebra. Such monogenic signals represent the generalization of analytic signals as elements of the Hardy space over the unit circle of the complex plane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new solution to the millionaire problem is designed on the base of two new techniques: zero test and batch equation. Zero test is a technique used to test whether one or more ciphertext contains a zero without revealing other information. Batch equation is a technique used to test equality of multiple integers. Combination of these two techniques produces the only known solution to the millionaire problem that is correct, private, publicly verifiable and efficient at the same time.