839 resultados para Restriction Mapping


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In Pseudomonas aeruginosa, N-acylhomoserine lactone signals regulate the expression of several hundreds of genes, via the transcriptional regulator LasR and, in part, also via the subordinate regulator RhlR. This regulatory network termed quorum sensing contributes to the virulence of P. aeruginosa as a pathogen. The fact that two supposed PAO1 wild-type strains from strain collections were found to be defective for LasR function because of independent point mutations in the lasR gene led to the hypothesis that loss of quorum sensing might confer a selective advantage on P. aeruginosa under certain environmental conditions. A convenient plate assay for LasR function was devised, based on the observation that lasR mutants did not grow on adenosine as the sole carbon source because a key degradative enzyme, nucleoside hydrolase (Nuh), is positively controlled by LasR. The wild-type PAO1 and lasR mutants showed similar growth rates when incubated in nutrient yeast broth at pH 6.8 and 37 degrees C with good aeration. However, after termination of growth during 30 to 54 h of incubation, when the pH rose to > or = 9, the lasR mutants were significantly more resistant to cell lysis and death than was the wild type. As a consequence, the lasR mutant-to-wild-type ratio increased about 10-fold in mixed cultures incubated for 54 h. In a PAO1 culture, five consecutive cycles of 48 h of incubation sufficed to enrich for about 10% of spontaneous mutants with a Nuh(-) phenotype, and five of these mutants, which were functionally complemented by lasR(+), had mutations in lasR. The observation that, in buffered nutrient yeast broth, the wild type and lasR mutants exhibited similar low tendencies to undergo cell lysis and death suggests that alkaline stress may be a critical factor providing a selective survival advantage to lasR mutants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A 6008 base pair fragment of the vaccinia virus DNA containing the gene for the precursor of the major core protein 4 a, which has been designated P4 a, was sequenced. A long open reading frame (ORF) encoding a protein of molecular weight 102,157 started close to the position where the P4 a mRNA had been mapped. Analysis of the mRNA by S1 nuclease mapping and primer extension indicated that the 5' end defined by the former method is not the true 5' end. This suggests that the P4 a coding region is preceded by leader sequences that are not derived from the immediate vicinity of the gene, similar to what has been reported for another late vaccinia virus mRNA. The sequenced DNA contained several further ORFs on the same, or opposite DNA strand, providing further evidence for the close spacing of protein-coding sequences in the viral genome.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transcription initiation at eukaryotic protein-coding gene promoters is regulated by a complex interplay of site-specific DNA-binding proteins acting synergistically or antagonistically. Here, we have analyzed the mechanisms of synergistic transcriptional activation between members of the CCAAT-binding transcription factor/nuclear factor I (CTF/NF-I) family and the estrogen receptor. By using cotransfection experiments with HeLa cells, we show that the proline-rich transcriptional activation domain of CTF-1, when fused to the GAL4 DNA-binding domain, synergizes with each of the two estrogen receptor-activating regions. Cooperative DNA binding between the GAL4-CTF-1 fusion and the estrogen receptor does not occur in vitro, and in vivo competition experiments demonstrate that both activators can be specifically inhibited by the overexpression of a proline-rich competitor, indicating that a common limiting factor is mediating their transcriptional activation functions. Furthermore, the two activators functioning synergistically are much more resistant to competition than either factor alone, suggesting that synergism between CTF-1 and the estrogen receptor is the result of a stronger tethering of the limiting target factor(s) to the two promoter-bound activators.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that can be activated by fatty acids and peroxisome proliferators. The PPAR alpha subtype mediates the pleiotropic effects of these activators in liver and regulates several target genes involved in fatty acid catabolism. In primary hepatocytes cultured in vitro, the PPAR alpha gene is regulated at the transcriptional level by glucocorticoids. We investigated if this hormonal regulation also occurs in the whole animal in physiological situations leading to increased plasma corticosterone levels in rats. We show here that an immobilization stress is a potent and rapid stimulator of PPAR alpha expression in liver but not in hippocampus. The injection of the synthetic glucocorticoid dexamethasone into adult rats produces a similar increase in PPAR alpha expression in liver, whereas the administration of the antiglucocorticoid RU 486 inhibits the stress-dependent stimulation. We conclude that glucocorticoids are major mediators of the stress response. Consistent with this hormonal regulation, hepatic PPAR alpha mRNA and protein levels follow a diurnal rhythm, which parallels that of circulating corticosterone. To test the effects of variations in PPAR alpha expression on PPAR alpha target gene activity, high glucocorticoid-dependent PPAR alpha expression was mimicked in cultured primary hepatocytes. Under these conditions, hormonal stimulation of receptor expression synergizes with receptor activation by WY-14,643 to induce the expression of the PPAR alpha target gene acyl-CoA oxidase. Together, these results show that regulation of the PPAR alpha expression levels efficiently modulates PPAR activator signaling and thus may affect downstream metabolic pathways involved in lipid homeostasis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Salicylate is a precursor of pyochelin in Pseudomonas aeruginosa and both compounds display siderophore activity. To elucidate the salicylate biosynthetic pathway, we have cloned and sequenced a chromosomal region of P. aeruginosa PAO1 containing two adjacent genes, designated pchB and pchA, which are necessary for salicylate formation. The pchA gene encodes a protein of 52 kDa with extensive similarity to the chorismate-utilizing enzymes isochorismate synthase, anthranilate synthase (component I) and p-aminobenzoate synthase (component I), whereas the 11 kDa protein encoded by pchB does not show significant similarity with other proteins. The pchB stop codon overlaps the presumed pchA start codon. Expression of the pchA gene in P. aeruginosa appears to depend on the transcription and translation of the upstream pchB gene. The pchBA genes are the first salicylate biosynthetic genes to be reported. Salicylate formation was demonstrated in an Escherichia coli entC mutant lacking isochorismate synthase when this strain expressed both the pchBA genes, but not when it expressed pchB alone. By contrast, an entB mutant of E. coli blocked in the conversion of isochorismate to 2,3-dihydro-2,3-dihydroxybenzoate formed salicylate when transformed with a pchB expression construct. Salicylate formation could also be demonstrated in vitro when chorismate was incubated with a crude extract of P. aeruginosa containing overproduced PchA and PchB proteins; salicylate and pyruvate were formed in equimolar amounts. Furthermore, salicylate-forming activity could be detected in extracts from a P. aeruginosa pyoverdin-negative mutant when grown under iron limitation, but not with iron excess. Our results are consistent with a pathway leading from chorismate to isochorismate and then to salicylate plus pyruvate, catalyzed consecutively by the iron-repressible PchA and PchB proteins in P. aeruginosa.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Female-specific expression of the Xenopus laevis vitellogenin gene was reconstituted in vitro by addition of recombinant vaccinia-virus-produced estrogen receptor to nuclear extracts from male livers, in which this gene is silent. Transcription enhancement was at least 30 times and was selectively restricted to vitellogenin templates containing the estrogen-responsive unit. Thus, in male hepatocytes, estrogen receptor is the limiting regulatory factor that in the female liver controls efficient and accurate sex-specific expression of the vitellogenin gene. Furthermore, the Xenopus liver factor B, which is essential in addition to the estrogen receptor for the activation of this gene, was successfully replaced in the Xenopus extract by purified human nuclear factor I, identifying factor B of Xenopus as a functional homolog of this well-characterized human transcription factor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The IncP alpha promiscuous plasmid (R18, R68, RK2, RP1 and RP4) comprises 60,099 bp of nucleotide sequence, encoding at least 74 genes. About 40 kb of the genome, designated the IncP core and including all essential replication and transfer functions, can be aligned with equivalent sequences in the IncP beta plasmid R751. The compiled IncP alpha sequence revealed several previously unidentified reading frames that are potential genes. IncP alpha plasmids carry genetic information very efficiently: the coding sequences of the genes are closely packed but rarely overlap, and occupy almost 86% of the genome's nucleotide sequence. All of the 74 genes should be expressed, although there is as yet experimental evidence for expression of only 60 of them. Six examples of tandem-in-frame initiation sites specifying two gene products each are known. Two overlapping gene arrangements occupy different reading frames of the same region. Intergenic regions include most of the 25 promoters; transcripts are usually polycistronic. Translation of most of the open reading frames seems to be initiated independently, each from its own ribosomal binding and initiation site, although, a few cases of coupled translation have been reported. The most frequently used initiation codon is AUG but translation for a few open reading frames begins at GUG or UUG. The most common stop-codon is UGA followed by UAA and then UAG. Regulatory circuits are complex and largely dependent on two components of the central control operon. KorA and KorB are transcriptional repressors controlling at least seven operons. KorA and KorB act synergistically in several cases by recognizing and binding to conserved nucleotide sequences. Twelve KorB binding sites were found around the IncP alpha sequence and these are conserved in R751 (IncP beta) with respect to both sequence and location. Replication of IncP alpha plasmids requires oriV and the plasmid-encoded initiator protein TrfA in combination with the host-encoded replication machinery. Conjugative plasmid transfer depends on two separate regions occupying about half of the genome. The primary segregational stability system designated Par/Mrs consists of a putative site-specific recombinase, a possible partitioning apparatus and a post-segregational lethality mechanism, all encoded in two divergent operons. Proteins related to the products of F sop and P1 par partitioning genes are separately encoded in the central control operon.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glucose-dependent insulinotropic polypeptide (GIP) is a hormone secreted by the endocrine K-cells from the duodenum that stimulates glucose-induced insulin secretion. Here, we present the molecular characterization of the human pancreatic islet GIP receptor. cDNA clones for the GIP receptor were isolated from a human pancreatic islet cDNA library. They encoded two different forms of the receptor, which differed by a 27-amino acid insertion in the COOH-terminal cytoplasmic tail. The receptor protein sequence was 81% identical to that of the rat GIP receptor. When expressed in Chinese hamster lung fibroblasts, both forms of the receptor displayed high-affinity binding for GIP (180 and 600 pmol/l). GIP binding was displaced by < 20% by 1 mumol/l glucagon, glucagon-like peptide (GLP-I)(7-36) amide, vasoactive intestinal peptide, and secretin. However exendin-4 and exendin-(9-39) at 1 mumol/l displaced binding by approximately 70 and approximately 100% at 10 mumol/l. GIP binding to both forms of the receptor induced a dose-dependent increase in intracellular cAMP levels (EC50 values of 0.6-0.8 nmol/l) but no elevation of cytoplasmic calcium concentrations. Interestingly, both exendin-4 and exendin-(9-39) were antagonists of the receptor, inhibiting GIP-induced cAMP formation by up to 60% when present at a concentration of 10 mumol/l. Finally, the physical and genetic chromosomal localization of the receptor gene was determined to be on 19q13.3, close to the ApoC2 gene. These data will help study the physiology and pathophysiology of the human GIP receptor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bacterial plasmids with two origins of replication in convergent orientation are frequently knotted in vivo. The knots formed are localised within the newly replicated DNA regions. Here, we analyse DNA knots tied within replication bubbles of such plasmids, and observe that the knots formed show predominantly positive signs of crossings. We propose that helical winding of replication bubbles in vivo leads to topoisomerase-mediated formation of knots on partially replicated DNA molecules.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Histone H1 in the parasitic protozoan Leishmania is a developmentally regulated protein encoded by the sw3 gene. Here we report that histone H1 variants exist in different Leishmania species and strains of L. major and that they are encoded by polymorphic genes. Amplification of the sw3 gene from the genome of three strains of L. major gave rise to different products in each strain, suggesting the presence of a multicopy gene family. In L. major, these genes were all restricted to a 50-kb Bg/II fragment found on a chromosomal band of 1.3 Mb (chromosome 27). The detection of RFLPs in this locus demonstrated its heterogeneity within several species and strains of Leishmania. Two different copies of sw3 (sw3.0 and sw3.1) were identified after screening a cosmid library containing L. major strain Friedlin genomic DNA. They were identical in their 5' UTRs and open reading frames, but differed in their 3' UTRs. With respect to the originally cloned copy of sw3 from L. major strain LV39, their open reading frames lacked a repeat unit of 9 amino acids. Immunoblots of L. guyanensis parasites transfected with these cosmids revealed that both copies could give rise to the histone H1 protein. The characterization of this locus will now make possible a detailed analysis of the function of histone H1 in Leishmania, as well as permit the dissection of the molecular mechanisms governing the developmental regulation of the sw3 gene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Salicylic acid (SA) plays a central role as a signalling molecule involved in plant defense against microbial attack. Genetic manipulation of SA biosynthesis may therefore help to generate plants that are more disease-resistant. By fusing the two bacterial genes pchA and pchB from Pseudomonas aeruginosa, which encode isochorismate synthase and isochorismate pyruvate-lyase, respectively, we have engineered a novel hybrid enzyme with salicylate synthase (SAS) activity. The pchB-A fusion was expressed in Arabidopsis thaliana under the control of the constitutive cauliflower mosaic virus (CaMV) 35S promoter, with targeting of the gene product either to the cytosol (c-SAS plants) or to the chloroplast (p-SAS plants). In p-SAS plants, the amount of free and conjugated SA was increased more than 20-fold above wild type (WT) level, indicating that SAS is functional in Arabidopsis. P-SAS plants showed a strongly dwarfed phenotype and produced very few seeds. Dwarfism could be caused by the high SA levels per se or, perhaps more likely, by a depletion of the chorismate or isochorismate pools of the chloroplast. Targeting of SAS to the cytosol caused a slight increase in free SA and a significant threefold increase in conjugated SA, probably reflecting limited chorismate availability in this compartment. Although this modest increase in total SA content did not strongly induce the resistance marker PR-1, it resulted nevertheless in enhanced disease resistance towards a virulent isolate of Peronospora parasitica. Increased resistance of c-SAS lines was paralleled with reduced seed production. Taken together, these results illustrate that SAS is a potent tool for the manipulation of SA levels in plants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The high-affinity siderophore salicylate is an intermediate in the biosynthetic pathway of pyochelin, another siderophore and chelator of transition metal ions, in Pseudomonas aeruginosa. The 2.5-kb region upstream of the salicylate biosynthetic genes pchBA was sequenced and found to contain two additional, contiguous genes, pchD and pchC, having the same orientation. The deduced amino acid sequence of the 60-kDa PchD protein was similar to those of the EntE protein (2,3-dihydroxybenzoate-AMP ligase) of Escherichia coli and other adenylate-forming enzymes, suggesting that salicylate might be adenylated at the carboxyl group by PchD. The 28-kDa PchC protein showed similarities to thioesterases of prokaryotic and eukaryotic origin and might participate in the release of the product(s) formed from activated salicylate. One potential product, dihydroaeruginoate (Dha), was identified in culture supernatants of iron-limited P. aeruginosa cells. The antifungal antibiotic Dha is thought to arise from the reaction of salicylate with cysteine, followed by cyclization of cysteine. Inactivation of the chromosomal pchD gene by insertion of the transcription and translation stop element omega Sm/Sp abolished the production of Dha and pyochelin, implying that PchD-mediated activation of salicylate may be a common first step in the synthesis of both metabolites. Furthermore, the pchD::omega Sm/Sp mutation had a strong polar effect on the expression of the pchBA genes, i.e., on salicylate synthesis, indicating that the pchDCBA genes constitute a transcriptional unit. A full-length pchDCBA transcript of ca. 4.4 kb could be detected in iron-deprived, growing cells of P. aeruginosa. Transcription of pchD started at tandemly arranged promoters, which overlapped with two Fur boxes (binding sites for the ferric uptake regulator) and the promoter of the divergently transcribed pchR gene encoding an activator of pyochelin biosynthesis. This promoter arrangement allows tight iron-mediated repression of the pchDCBA operon.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cdc10 gene of the fission yeast S. pombe is required for traverse of the start control in late G1 and commitment to the mitotic cell cycle. To increase our understanding of the events which occur at start, a pseudoreversion analysis was undertaken to identify genes whose products may interact with cdc10 or bypass the requirement for it. A single gene, sct1+ (suppressor of cdc ten), has been identified, mutation of which suppresses all conditional alleles and a null allele of cdc10. Bypass of the requirement for cdc10+ function by sct1-1 mutations leads to pleiotropic defects, including microtubule, microfilament and nuclear structural abnormalities. Our data suggest that sct1 encodes a protein that is dependent upon cdc10+ either for its normal function or expression, or is a component of a checkpoint that monitors execution of p85cdc10 function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The estrogen-dependent and tissue-specific regulation of the Xenopus laevis vitellogenin gene B1 promoter has been studied by lipid-mediated DNA transfer into Xenopus hepatocytes in primary culture. Hepatocytes achieve an efficient hormonal control of this promoter through a functional interaction between the estrogen responsive elements and a promoter proximal region upstream of the TATA box, which is characterized by a high density of binding sites for the transcription factors CTF/NF-1, C/EBP and HNF3. DNA accessibility to restriction enzymes within the chromosomal copy of the vitellogenin gene B1 promoter shows that the estrogen responsive unit and the promoter proximal region are sensitive to digestion in uninduced and estrogen-induced hepatocytes but not in erythrocyte nuclei. Together, these findings support the notion that chromatin configuration as well as the interplay of promoter elements mediate proper hormone-dependent and tissue-specific expression of the B1 vitellogenin gene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The regenerating urodele limb is a useful model system in which to study, in vivo, the controls of cell proliferation and differentiation. Techniques are available which enable one to experimentally manipulate mitogenic influences upon the blastema, as well the morphogenesis of the regenerating 11mb. Although classical regeneration studies have generated a wealth of knowledge concerning tissue interactions, little 1s known about the process at the level of gene expression. The aim of this project was to clone potentially developmentally regulated genes from a newt genomic library for use in future studies of gene expression during limb regeneration. We decided to clone the cytoskeletal actin gene for the following reasons: 1. its expression reflects the proliferative and differentiatlve states of cells in other systems 2. the high copy number of cytoplasmic actin pseudogenes in other vertebrates and the high degree of evolutionary sequence conservation among actin genes increased the chance of cloning one of the newt cytoplasmic actin genes. 3. Preliminary experiments indicated that a newt actin could probably be identified using an available chick ~-actln gene for a molecular probe. Two independent recombinant phage clones, containing actin homologous inserts, were isolated from a newt genomic library by hybridization with the chick actin probe. Restriction mapping identified actin homologous sequences within the newt DNA inserts which were subcloned into the plasmid pTZ19R. The recombinant plasmids were transformed into the Escherichia coli strain, DHsa. Detailed restriction maps were produced of the 5.7Kb and 3.1Kb newt DNA inserts in the plasmids, designated pTNAl and pTNA2. The short «1.3 Kb) length of the actin homologous sequence in pTNA2 indicated that it was possibly a reverse transcript pseudogene. Problems associated with molecular cloning of DNA sequences from N. viridescens are discussed with respect to the large genome size and abundant highly repetitive DNA sequences.