848 resultados para Relevance feature
Resumo:
This study presents an acoustic emission (AE) based fault diagnosis for low speed bearing using multi-class relevance vector machine (RVM). A low speed test rig was developed to simulate the various defects with shaft speeds as low as 10 rpm under several loading conditions. The data was acquired using anAEsensor with the test bearing operating at a constant loading (5 kN) andwith a speed range from20 to 80 rpm. This study is aimed at finding a reliable method/tool for low speed machines fault diagnosis based on AE signal. In the present study, component analysis was performed to extract the bearing feature and to reduce the dimensionality of original data feature. The result shows that multi-class RVM offers a promising approach for fault diagnosis of low speed machines.
Resumo:
The increased availability of image capturing devices has enabled collections of digital images to rapidly expand in both size and diversity. This has created a constantly growing need for efficient and effective image browsing, searching, and retrieval tools. Pseudo-relevance feedback (PRF) has proven to be an effective mechanism for improving retrieval accuracy. An original, simple yet effective rank-based PRF mechanism (RB-PRF) that takes into account the initial rank order of each image to improve retrieval accuracy is proposed. This RB-PRF mechanism innovates by making use of binary image signatures to improve retrieval precision by promoting images similar to highly ranked images and demoting images similar to lower ranked images. Empirical evaluations based on standard benchmarks, namely Wang, Oliva & Torralba, and Corel datasets demonstrate the effectiveness of the proposed RB-PRF mechanism in image retrieval.
Resumo:
Multimedia mining primarily involves, information analysis and retrieval based on implicit knowledge. The ever increasing digital image databases on the Internet has created a need for using multimedia mining on these databases for effective and efficient retrieval of images. Contents of an image can be expressed in different features such as Shape, Texture and Intensity-distribution(STI). Content Based Image Retrieval(CBIR) is an efficient retrieval of relevant images from large databases based on features extracted from the image. Most of the existing systems either concentrate on a single representation of all features or linear combination of these features. The paper proposes a CBIR System named STIRF (Shape, Texture, Intensity-distribution with Relevance Feedback) that uses a neural network for nonlinear combination of the heterogenous STI features. Further the system is self-adaptable to different applications and users based upon relevance feedback. Prior to retrieval of relevant images, each feature is first clustered independent of the other in its own space and this helps in matching of similar images. Testing the system on a database of images with varied contents and intensive backgrounds showed good results with most relevant images being retrieved for a image query. The system showed better and more robust performance compared to existing CBIR systems
Resumo:
Enot, D. P., Beckmann, M., Overy, D., Draper, J. (2006). Predicting interpretability of metabolome models based on behavior, putative identity, and biological relevance of explanatory signals. Proceedings of the National Academy of Sciences of the USA, 103(40), 14865-14870. Sponsorship: BBSRC RAE2008
Resumo:
Gait disturbances are a common feature of Parkinson’s disease, one of the most severe being freezing of gait. Sensory cueing is a common method used to facilitate stepping in people with Parkinson’s. Recent work has shown that, compared to walking to a metronome, Parkinson’s patients without freezing of gait (nFOG) showed reduced gait variability when imitating recorded sounds of footsteps made on gravel. However, it is not known if these benefits are realised through the continuity of the acoustic information or the action-relevance. Furthermore, no study has examined if these benefits extend to PD with freezing of gait. We prepared four different auditory cues (varying in action-relevance and acoustic continuity) and asked 19 Parkinson’s patients (10 nFOG, 9 with freezing of gait (FOG)) to step in place to each cue. Results showed a superiority of action-relevant cues (regardless of cue-continuity) for inducing reductions in Step coefficient of variation (CV). Acoustic continuity was associated with a significant reduction in Swing CV. Neither cue-continuity nor action-relevance was independently sufficient to increase the time spent stepping before freezing. However, combining both attributes in the same cue did yield significant improvements. This study demonstrates the potential of using action-sounds as sensory cues for Parkinson’s patients with freezing of gait. We suggest that the improvements shown might be considered audio-motor ‘priming’ (i.e., listening to the sounds of footsteps will engage sensorimotor circuitry relevant to the production of that same action, thus effectively bypassing the defective basal ganglia).
Resumo:
Discrete data representations are necessary, or at least convenient, in many machine learning problems. While feature selection (FS) techniques aim at finding relevant subsets of features, the goal of feature discretization (FD) is to find concise (quantized) data representations, adequate for the learning task at hand. In this paper, we propose two incremental methods for FD. The first method belongs to the filter family, in which the quality of the discretization is assessed by a (supervised or unsupervised) relevance criterion. The second method is a wrapper, where discretized features are assessed using a classifier. Both methods can be coupled with any static (unsupervised or supervised) discretization procedure and can be used to perform FS as pre-processing or post-processing stages. The proposed methods attain efficient representations suitable for binary and multi-class problems with different types of data, being competitive with existing methods. Moreover, using well-known FS methods with the features discretized by our techniques leads to better accuracy than with the features discretized by other methods or with the original features. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Voluntary selective attention can prioritize different features in a visual scene. The frontal eye-fields (FEF) are one potential source of such feature-specific top-down signals, but causal evidence for influences on visual cortex (as was shown for "spatial" attention) has remained elusive. Here, we show that transcranial magnetic stimulation (TMS) applied to right FEF increased the blood oxygen level-dependent (BOLD) signals in visual areas processing "target feature" but not in "distracter feature"-processing regions. TMS-induced BOLD signals increase in motion-responsive visual cortex (MT+) when motion was attended in a display with moving dots superimposed on face stimuli, but in face-responsive fusiform area (FFA) when faces were attended to. These TMS effects on BOLD signal in both regions were negatively related to performance (on the motion task), supporting the behavioral relevance of this pathway. Our findings provide new causal evidence for the human FEF in the control of nonspatial "feature"-based attention, mediated by dynamic influences on feature-specific visual cortex that vary with the currently attended property.
Resumo:
The purpose of this study is to determine the expression of CCL19, CCL21, and CCR7 in samples of oral squamous cell carcinoma (OSCC) and their relationship with clinical and microscopic parameters. A comparative analysis was made of the mRNA expression of these chemokines and receptor in OSCC and normal oral mucosa. The immunoexpression of CCR7, CCL19, and CCL21 was also verified in OSCC and lymph nodes. Statistical significance was accepted at P < 0.05. Similar levels of CCR7, CCL19, and CCL21 mRNA in OSCC and normal oral mucosa were seen. A low expression of CCL19 and CCL21 in the intra- and peritumoral regions was observed. Scarce CCL19+ and CCL21+ cells were also noted in metastatic and non-metastatic lymph nodes. No association was found between the expression of these chemokines and clinical and microscopic parameters. Our findings would suggest that CCL19 and CCL21 may not be associated with cervical lymph node metastasis or other clinical and microscopic factors in OSCC. © 2012 International Society of Oncology and BioMarkers (ISOBM).
Resumo:
The role of platelets as inflammatory cells is demonstrated by the fact that they can release many growth factors and inflammatory mediators, including chemokines, when they are activated. The best known platelet chemokine family members are platelet factor 4 (PF4) and beta-thromboglobulin (beta-TG), which are synthesized in megakaryocytes, stored as preformed proteins in alpha-granules and released from activated platelets. However, platelets also contain many other chemokines such as interleukin-8 (IL-8), growth-regulating oncogene-alpha(GRO-alpha), epithelial neutrophil-activating protein 78 (ENA-78), regulated on activation normal T expressed and secreted (RANTES), macrophage inflammatory protein-1alpha (MIP-1alpha), and monocyte chemotactic protein-3 (MCP-3). They also express chemokine receptors such as CCR4, CXCR4, CCR1 and CCR3. Platelet activation is a feature of many inflammatory diseases such as heparin-induced thrombocytopenia, acquired immunodeficiency syndrome, and congestive heart failure. Substantial amounts of PF4, beta-TG and RANTES are released from platelets on activation, which may occur during storage. Although very few data are available on the in vivo effects of transfused chemokines, it has been suggested that the high incidence of adverse reactions often observed after platelet transfusions may be attributed to the chemokines present in the plasma of stored platelet concentrates.
Resumo:
INTRODUCTION Agonistic antibodies targeting TRAIL-receptors 1 and 2 (TRAIL-R1 and TRAIL-R2) are being developed as a novel therapeutic approach in cancer therapy including pancreatic cancer. However, the cellular distribution of these receptors in primary pancreatic cancer samples has not been sufficiently investigated and no study has yet addressed the issue of their prognostic significance in this tumor entity. AIMS AND METHODS Applying tissue microarray (TMA) analysis, we performed an immunohistochemical assessment of TRAIL-receptors in surgical samples from 84 consecutive patients affected by pancreatic adenocarcinoma and in 26 additional selected specimens from patients with no lymph nodes metastasis at the time of surgery. The prognostic significance of membrane staining and staining intensity for TRAIL-receptors was evaluated. RESULTS The fraction of pancreatic cancer samples with positive membrane staining for TRAIL-R1 and TRAIL-R2 was lower than that of cells from surrounding non-tumor tissues (TRAIL-R1: p<0.001, TRAIL-R2: p = 0.006). In addition, subgroup analyses showed that loss of membrane staining for TRAIL-R2 was associated with poorer prognosis in patients without nodal metastases (multivariate Cox regression analysis, Hazard Ratio: 0.44 [95% confidence interval: 0.22-0.87]; p = 0.019). In contrast, analysis of decoy receptors TRAIL-R3 and -R4 in tumor samples showed an exclusively cytoplasmatic staining pattern and no prognostic relevance. CONCLUSION This is a first report on the prognostic significance of TRAIL-receptors expression in pancreatic cancer showing that TRAIL-R2 might represent a prognostic marker for patients with early stage disease. In addition, our data suggest that loss of membrane-bound TRAIL-receptors could represent a molecular mechanism for therapeutic failure upon administration of TRAIL-receptors-targeting antibodies in pancreatic cancer. This hypothesis should be evaluated in future clinical trials.
Resumo:
Most data stream classification techniques assume that the underlying feature space is static. However, in real-world applications the set of features and their relevance to the target concept may change over time. In addition, when the underlying concepts reappear, reusing previously learnt models can enhance the learning process in terms of accuracy and processing time at the expense of manageable memory consumption. In this paper, we propose mining recurring concepts in a dynamic feature space (MReC-DFS), a data stream classification system to address the challenges of learning recurring concepts in a dynamic feature space while simultaneously reducing the memory cost associated with storing past models. MReC-DFS is able to detect and adapt to concept changes using the performance of the learning process and contextual information. To handle recurring concepts, stored models are combined in a dynamically weighted ensemble. Incremental feature selection is performed to reduce the combined feature space. This contribution allows MReC-DFS to store only the features most relevant to the learnt concepts, which in turn increases the memory efficiency of the technique. In addition, an incremental feature selection method is proposed that dynamically determines the threshold between relevant and irrelevant features. Experimental results demonstrating the high accuracy of MReC-DFS compared with state-of-the-art techniques on a variety of real datasets are presented. The results also show the superior memory efficiency of MReC-DFS.
Resumo:
Nonlinear analysis tools for studying and characterizing the dynamics of physiological signals have gained popularity, mainly because tracking sudden alterations of the inherent complexity of biological processes might be an indicator of altered physiological states. Typically, in order to perform an analysis with such tools, the physiological variables that describe the biological process under study are used to reconstruct the underlying dynamics of the biological processes. For that goal, a procedure called time-delay or uniform embedding is usually employed. Nonetheless, there is evidence of its inability for dealing with non-stationary signals, as those recorded from many physiological processes. To handle with such a drawback, this paper evaluates the utility of non-conventional time series reconstruction procedures based on non uniform embedding, applying them to automatic pattern recognition tasks. The paper compares a state of the art non uniform approach with a novel scheme which fuses embedding and feature selection at once, searching for better reconstructions of the dynamics of the system. Moreover, results are also compared with two classic uniform embedding techniques. Thus, the goal is comparing uniform and non uniform reconstruction techniques, including the one proposed in this work, for pattern recognition in biomedical signal processing tasks. Once the state space is reconstructed, the scheme followed characterizes with three classic nonlinear dynamic features (Largest Lyapunov Exponent, Correlation Dimension and Recurrence Period Density Entropy), while classification is carried out by means of a simple k-nn classifier. In order to test its generalization capabilities, the approach was tested with three different physiological databases (Speech Pathologies, Epilepsy and Heart Murmurs). In terms of the accuracy obtained to automatically detect the presence of pathologies, and for the three types of biosignals analyzed, the non uniform techniques used in this work lightly outperformed the results obtained using the uniform methods, suggesting their usefulness to characterize non-stationary biomedical signals in pattern recognition applications. On the other hand, in view of the results obtained and its low computational load, the proposed technique suggests its applicability for the applications under study.
Resumo:
In this paper, we propose a novel filter for feature selection. Such filter relies on the estimation of the mutual information between features and classes. We bypass the estimation of the probability density function with the aid of the entropic-graphs approximation of Rényi entropy, and the subsequent approximation of the Shannon one. The complexity of such bypassing process does not depend on the number of dimensions but on the number of patterns/samples, and thus the curse of dimensionality is circumvented. We show that it is then possible to outperform a greedy algorithm based on the maximal relevance and minimal redundancy criterion. We successfully test our method both in the contexts of image classification and microarray data classification.
Resumo:
This study of the veranda as seen through the eyes of Lady Maria Nugent and Michael Scott, alias Tom Cringle, clearly demonstrates the important role that the piazza, as it was then more commonly known, played in the life of early nineteenth century Caribbean colonial society. The popularity of the veranda throughout the region, in places influenced by different European as well as African cultures, and among all classes of people, suggests that the appeal of this typical feature was based on something more than architectural fashion. A place of relative comfort in hot weather, the veranda is also a space at the interface of indoors and outdoors which allows for a wide variety of uses, for solitary or small or large group activities, many of which were noted by Nugent and Scott. Quintessentially, the veranda is a place in which to relax and take pleasure, not least of which is the enjoyment of the prospect, be it a panoramic view, a peaceful garden or a lively street scene. Despite the great changes in the nature of society, in the Caribbean and in many other parts of the world, the veranda and related structures such as the balcony continue to play at least as important a role in daily life as they did two centuries ago. The veranda of today’s Californian or Australian bungalow, and the balcony of the apartment block in the residential area of the modern city are among the contemporary equivalents of the lower and upper piazzas of Lady Nugent’s and Tom Cringle’s day.