980 resultados para Regulatory Models
Resumo:
Tese (doutorado)—Universidade de Brasília, Faculdade de Educação, Programa de Pós-graduação em Educação, 2015.
Resumo:
Bistability arises within a wide range of biological systems from the λ phage switch in bacteria to cellular signal transduction pathways in mammalian cells. Changes in regulatory mechanisms may result in genetic switching in a bistable system. Recently, more and more experimental evidence in the form of bimodal population distributions indicates that noise plays a very important role in the switching of bistable systems. Although deterministic models have been used for studying the existence of bistability properties under various system conditions, these models cannot realize cell-to-cell fluctuations in genetic switching. However, there is a lag in the development of stochastic models for studying the impact of noise in bistable systems because of the lack of detailed knowledge of biochemical reactions, kinetic rates, and molecular numbers. In this work, we develop a previously undescribed general technique for developing quantitative stochastic models for large-scale genetic regulatory networks by introducing Poisson random variables into deterministic models described by ordinary differential equations. Two stochastic models have been proposed for the genetic toggle switch interfaced with either the SOS signaling pathway or a quorum-sensing signaling pathway, and we have successfully realized experimental results showing bimodal population distributions. Because the introduced stochastic models are based on widely used ordinary differential equation models, the success of this work suggests that this approach is a very promising one for studying noise in large-scale genetic regulatory networks.
Resumo:
The articles collected here in this special edition Epithelial-Mesenchymal (EMT) and Mesenchymal-Epithelial Transitions (MET) in Cancer provide a snapshot of the very rapidly progressing cinemascope of the involvement of these transitions in carcinoma progression. Pubmed analysis of EMT and cancer shows an exponential increase in the last few years in the number of papers and reviews published under these terms (Fig. 1). The last few years have seen these articles appearing in high calibre journals including Nature, Nature Cell Biology, Cancer Cell, PNAS, JNCI, JCI, and Cell, signaling the acceptance and quality of work in this field.
Resumo:
Background: In the analysis of effects by cell treatment such as drug dosing, identifying changes on gene network structures between normal and treated cells is a key task. A possible way for identifying the changes is to compare structures of networks estimated from data on normal and treated cells separately. However, this approach usually fails to estimate accurate gene networks due to the limited length of time series data and measurement noise. Thus, approaches that identify changes on regulations by using time series data on both conditions in an efficient manner are demanded. Methods: We propose a new statistical approach that is based on the state space representation of the vector autoregressive model and estimates gene networks on two different conditions in order to identify changes on regulations between the conditions. In the mathematical model of our approach, hidden binary variables are newly introduced to indicate the presence of regulations on each condition. The use of the hidden binary variables enables an efficient data usage; data on both conditions are used for commonly existing regulations, while for condition specific regulations corresponding data are only applied. Also, the similarity of networks on two conditions is automatically considered from the design of the potential function for the hidden binary variables. For the estimation of the hidden binary variables, we derive a new variational annealing method that searches the configuration of the binary variables maximizing the marginal likelihood. Results: For the performance evaluation, we use time series data from two topologically similar synthetic networks, and confirm that our proposed approach estimates commonly existing regulations as well as changes on regulations with higher coverage and precision than other existing approaches in almost all the experimental settings. For a real data application, our proposed approach is applied to time series data from normal Human lung cells and Human lung cells treated by stimulating EGF-receptors and dosing an anticancer drug termed Gefitinib. In the treated lung cells, a cancer cell condition is simulated by the stimulation of EGF-receptors, but the effect would be counteracted due to the selective inhibition of EGF-receptors by Gefitinib. However, gene expression profiles are actually different between the conditions, and the genes related to the identified changes are considered as possible off-targets of Gefitinib. Conclusions: From the synthetically generated time series data, our proposed approach can identify changes on regulations more accurately than existing methods. By applying the proposed approach to the time series data on normal and treated Human lung cells, candidates of off-target genes of Gefitinib are found. According to the published clinical information, one of the genes can be related to a factor of interstitial pneumonia, which is known as a side effect of Gefitinib.
Resumo:
Bistability arises within a wide range of biological systems from the A phage switch in bacteria to cellular signal transduction pathways in mammalian cells. Changes in regulatory mechanisms may result in genetic switching in a bistable system. Recently, more and more experimental evidence in the form of bimodal population distributions indicates that noise plays a very important role in the switching of bistable systems. Although deterministic models have been used for studying the existence of bistability properties under various system conditions, these models cannot realize cell-to-cell fluctuations in genetic switching. However, there is a lag in the development of stochastic models for studying the impact of noise in bistable systems because of the lack of detailed knowledge of biochemical reactions, kinetic rates, and molecular numbers. in this work, we develop a previously undescribed general technique for developing quantitative stochastic models for large-scale genetic regulatory networks by introducing Poisson random variables into deterministic models described by ordinary differential equations. Two stochastic models have been proposed for the genetic toggle switch interfaced with either the SOS signaling pathway or a quorum-sensing signaling pathway, and we have successfully realized experimental results showing bimodal population distributions. Because the introduced stochastic models are based on widely used ordinary differential equation models, the success of this work suggests that this approach is a very promising one for studying noise in large-scale genetic regulatory networks.
Resumo:
Presentation of an abstract
Resumo:
The U.S. Nuclear Regulatory Commission implemented a safety goal policy in response to the 1979 Three Mile Island accident. This policy addresses the question “How safe is safe enough?” by specifying quantitative health objectives (QHOs) for comparison with results from nuclear power plant (NPP) probabilistic risk analyses (PRAs) to determine whether proposed regulatory actions are justified based on potential safety benefit. Lessons learned from recent operating experience—including the 2011 Fukushima accident—indicate that accidents involving multiple units at a shared site can occur with non-negligible frequency. Yet risk contributions from such scenarios are excluded by policy from safety goal evaluations—even for the nearly 60% of U.S. NPP sites that include multiple units. This research develops and applies methods for estimating risk metrics for comparison with safety goal QHOs using models from state-of-the-art consequence analyses to evaluate the effect of including multi-unit accident risk contributions in safety goal evaluations.
Resumo:
Currently, well-established clinical therapeutic approaches for bone reconstruction are restricted to the transplantation of autografts and allografts, and the implantation of metal devices or ceramic-based implants to assist bone regeneration. Bone grafts possess osteoconductive and osteoinductive properties, however they are limited in access and availability and associated with donor site morbidity, haemorrhage, risk of infection, insufficient transplant integration, graft devitalisation, and subsequent resorption resulting in decreased mechanical stability. As a result, recent research focuses on the development of alternative therapeutic concepts. Analysing the tissue engineering literature it can be concluded that bone regeneration has become a focus area in the field. Hence, a considerable number of research groups and commercial entities work on the development of tissue engineered constructs for bone regeneration. However, bench to bedside translations are still infrequent as the process towards approval by regulatory bodies is protracted and costly, requiring both comprehensive in vitro and in vivo studies. In translational orthopaedic research, the utilisation of large preclinical animal models is a conditio sine qua non. Consequently, to allow comparison between different studies and their outcomes, it is essential that animal models, fixation devices, surgical procedures and methods of taking measurements are well standardized to produce reliable data pools as a base for further research directions. The following chapter reviews animal models of the weight-bearing lower extremity utilized in the field which include representations of fracture-healing, segmental bone defects, and fracture non-unions.
Resumo:
An inverse association exists between some bacterial infections and the prevalence of asthma. We investigated whether Streptococcus pneumoniae infection protects against asthma using mouse models of ovalbumin (OVA)-induced allergic airway disease (AAD). Mice were intratracheally infected or treated with killed S. pneumoniae before, during or after OVA sensitisation and subsequent challenge. The effects of S. pneumoniae on AAD were assessed. Infection or treatment with killed S. pneumoniae suppressed hallmark features of AAD, including antigen-specific T-helper cell (Th) type 2 cytokine and antibody responses, peripheral and pulmonary eosinophil accumulation, goblet cell hyperplasia, and airway hyperresponsiveness. The effect of infection on the development of specific features of AAD depended on the timing of infection relative to allergic sensitisation and challenge. Infection induced significant increases in regulatory T-cell (Treg) numbers in lymph nodes, which correlated with the degree of suppression of AAD. Tregs reduced T-cell proliferation and Th2 cytokine release. The suppressive effects of infection were reversed by anti-CD25 treatment. Respiratory infection or treatment with S. pneumoniae attenuates allergic immune responses and suppresses AAD. These effects may be mediated by S. pneumoniae-induced Tregs. This identifies the potential for the development of therapeutic agents for asthma from S. pneumoniae.
Resumo:
This chapter focuses on the interactions and roles between delays and intrinsic noise effects within cellular pathways and regulatory networks. We address these aspects by focusing on genetic regulatory networks that share a common network motif, namely the negative feedback loop, leading to oscillatory gene expression and protein levels. In this context, we discuss computational simulation algorithms for addressing the interplay of delays and noise within the signaling pathways based on biological data. We address implementational issues associated with efficiency and robustness. In a molecular biology setting we present two case studies of temporal models for the Hes1 gene (Monk, 2003; Hirata et al., 2002), known to act as a molecular clock, and the Her1/Her7 regulatory system controlling the periodic somite segmentation in vertebrate embryos (Giudicelli and Lewis, 2004; Horikawa et al., 2006).
Resumo:
Recent studies have shown that small genetic regulatory networks (GRNs) can be evolved in silico displaying certain dynamics in the underlying mathematical model. It is expected that evolutionary approaches can help to gain a better understanding of biological design principles and assist in the engineering of genetic networks. To take the stochastic nature of GRNs into account, our evolutionary approach models GRNs as biochemical reaction networks based on simple enzyme kinetics and simulates them by using Gillespie’s stochastic simulation algorithm (SSA). We have already demonstrated the relevance of considering intrinsic stochasticity by evolving GRNs that show oscillatory dynamics in the SSA but not in the ODE regime. Here, we present and discuss first results in the evolution of GRNs performing as stochastic switches.
Resumo:
Purpose – The purpose of this paper is to jointly assess the impact of regulatory reform for corporate fundraising in Australia (CLERP Act 1999) and the relaxation of ASX admission rules in 1999, on the accuracy of management earnings forecasts in initial public offer (IPO) prospectuses. The relaxation of ASX listing rules permitted a new category of new economy firms (commitments test entities (CTEs))to list without a prior history of profitability, while the CLERP Act (introduced in 2000) was accompanied by tighter disclosure obligations and stronger enforcement action by the corporate regulator (ASIC). Design/methodology/approach – All IPO earnings forecasts in prospectuses lodged between 1998 and 2003 are examined to assess the pre- and post-CLERP Act impact. Based on active ASIC enforcement action in the post-reform period, IPO firms are hypothesised to provide more accurate forecasts, particularly CTE firms, which are less likely to have a reasonable basis for forecasting. Research models are developed to empirically test the impact of the reforms on CTE and non-CTE IPO firms. Findings – The new regulatory environment has had a positive impact on management forecasting behaviour. In the post-CLERP Act period, the accuracy of prospectus forecasts and their revisions significantly improved and, as expected, the results are primarily driven by CTE firms. However, the majority of prospectus forecasts continue to be materially inaccurate. Originality/value – The results highlight the need to control for both the changing nature of listed firms and the level of enforcement action when examining responses to regulatory changes to corporate fundraising activities.