992 resultados para Recursive real numbers


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The set of transreal numbers is a superset of the real numbers. It totalises real arithmetic by defining division by zero in terms of three def- inite, non-finite numbers: positive infinity, negative infinity and nullity. Elsewhere, in this proceedings, we extended continuity and limits from the real domain to the transreal domain, here we extended the real derivative to the transreal derivative. This continues to demonstrate that transreal analysis contains real analysis and operates at singularities where real analysis fails. Hence computer programs that rely on computing deriva- tives { such as those used in scientific, engineering and financial applica- tions { are extended to operate at singularities where they currently fail. This promises to make software, that computes derivatives, both more competent and more reliable. We also extended the integration of absolutely convergent functions from the real domain to the transreal domain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Let λ1,…,λn be real numbers in (0,1) and p1,…,pn be points in Rd. Consider the collection of maps fj:Rd→Rd given by fj(x)=λjx+(1−λj)pj. It is a well known result that there exists a unique nonempty compact set Λ⊂Rd satisfying Λ=∪nj=1fj(Λ). Each x∈Λ has at least one coding, that is a sequence (ϵi)∞i=1 ∈{1,…,n}N that satisfies limN→∞fϵ1…fϵN(0)=x. We study the size and complexity of the set of codings of a generic x∈Λ when Λ has positive Lebesgue measure. In particular, we show that under certain natural conditions almost every x∈Λ has a continuum of codings. We also show that almost every x∈Λ has a universal coding. Our work makes no assumptions on the existence of holes in Λ and improves upon existing results when it is assumed Λ contains no holes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The idea of considering imprecision in probabilities is old, beginning with the Booles George work, who in 1854 wanted to reconcile the classical logic, which allows the modeling of complete ignorance, with probabilities. In 1921, John Maynard Keynes in his book made explicit use of intervals to represent the imprecision in probabilities. But only from the work ofWalley in 1991 that were established principles that should be respected by a probability theory that deals with inaccuracies. With the emergence of the theory of fuzzy sets by Lotfi Zadeh in 1965, there is another way of dealing with uncertainty and imprecision of concepts. Quickly, they began to propose several ways to consider the ideas of Zadeh in probabilities, to deal with inaccuracies, either in the events associated with the probabilities or in the values of probabilities. In particular, James Buckley, from 2003 begins to develop a probability theory in which the fuzzy values of the probabilities are fuzzy numbers. This fuzzy probability, follows analogous principles to Walley imprecise probabilities. On the other hand, the uses of real numbers between 0 and 1 as truth degrees, as originally proposed by Zadeh, has the drawback to use very precise values for dealing with uncertainties (as one can distinguish a fairly element satisfies a property with a 0.423 level of something that meets with grade 0.424?). This motivated the development of several extensions of fuzzy set theory which includes some kind of inaccuracy. This work consider the Krassimir Atanassov extension proposed in 1983, which add an extra degree of uncertainty to model the moment of hesitation to assign the membership degree, and therefore a value indicate the degree to which the object belongs to the set while the other, the degree to which it not belongs to the set. In the Zadeh fuzzy set theory, this non membership degree is, by default, the complement of the membership degree. Thus, in this approach the non-membership degree is somehow independent of the membership degree, and this difference between the non-membership degree and the complement of the membership degree reveals the hesitation at the moment to assign a membership degree. This new extension today is called of Atanassov s intuitionistic fuzzy sets theory. It is worth noting that the term intuitionistic here has no relation to the term intuitionistic as known in the context of intuitionistic logic. In this work, will be developed two proposals for interval probability: the restricted interval probability and the unrestricted interval probability, are also introduced two notions of fuzzy probability: the constrained fuzzy probability and the unconstrained fuzzy probability and will eventually be introduced two notions of intuitionistic fuzzy probability: the restricted intuitionistic fuzzy probability and the unrestricted intuitionistic fuzzy probability

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main objective of this work is to optimize the performance of frequency selective surfaces (FSS) composed of crossed dipole conducting patches. The optimization process is performed by determining proper values for the width of the crossed dipoles and for the FSS array periodicity, while the length of the crossed dipoles is kept constant. Particularly, the objective is to determine values that provide wide bandwidth using a search algorithm with representation in bioinspired real numbers. Typically FSS structures composed of patch elements are used for band rejection filtering applications. The FSS structures primarily act like filters depending on the type of element chosen. The region of the electromagnetic spectrum chosen for this study is the one that goes from 7 GHz to 12 GHz, which includes mostly the X-band. This frequency band was chosen to allow the use of two X-band horn antennas, in the FSS measurement setup. The design of the FSS using the developed genetic algorithm allowed increasing the structure bandwidth

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, we present a text on the Sets Numerical using the human social needs as a tool for construction new numbers. This material is intended to present a text that reconciles the correct teaching of mathmatics and clarity needed for a good learning

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The play operator has a fundamental importance in the theory of hysteresis. It was studied in various settings as shown by P. Krejci and Ph. Laurencot in 2002. In that work it was considered the Young integral in the frame of Hilbert spaces. Here we study the play in the frame of the regulated functions (that is: the ones having only discontinuities of the first kind) on a general time scale T (that is: with T being a nonempty closed set of real numbers) with values in a Banach space. We will be showing that the dual space in this case will be defined as the space of operators of bounded semivariation if we consider as the bilinearity pairing the Cauchy-Stieltjes integral on time scales.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Monoidal logic, ML for short, which formalized the fuzzy logics of continuous t-norms and their residua, has arisen great interest, since it has been applied to fuzzy mathematics, artificial intelligence, and other areas. It is clear that fuzzy logics basically try to represent imperfect or fuzzy information aiming to model the natural human reasoning. On the other hand, in order to deal with imprecision in the computational representation of real numbers, the use of intervals have been proposed, as it can guarantee that the results of numerical computation are in a bounded interval, controlling, in this way, the numerical errors produced by successive roundings. There are several ways to connect both areas; the most usual one is to consider interval membership degrees. The algebraic counterpart of ML is ML-algebra, an interesting structure due to the fact that by adding some properties it is possible to reach different classes of residuated lattices. We propose to apply an interval constructor to ML-algebras and some of their subclasses, to verify some properties within these algebras, in addition to the analysis of the algebraic aspects of them

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The intervalar arithmetic well-known as arithmetic of Moore, doesn't possess the same properties of the real numbers, and for this reason, it is confronted with a problem of operative nature, when we want to solve intervalar equations as extension of real equations by the usual equality and of the intervalar arithmetic, for this not to possess the inverse addictive, as well as, the property of the distributivity of the multiplication for the sum doesn t be valid for any triplet of intervals. The lack of those properties disables the use of equacional logic, so much for the resolution of an intervalar equation using the same, as for a representation of a real equation, and still, for the algebraic verification of properties of a computational system, whose data are real numbers represented by intervals. However, with the notion of order of information and of approach on intervals, introduced by Acióly[6] in 1991, the idea of an intervalar equation appears to represent a real equation satisfactorily, since the terms of the intervalar equation carry the information about the solution of the real equation. In 1999, Santiago proposed the notion of simple equality and, later on, local equality for intervals [8] and [33]. Based on that idea, this dissertation extends Santiago's local groups for local algebras, following the idea of Σ-algebras according to (Hennessy[31], 1988) and (Santiago[7], 1995). One of the contributions of this dissertation, is the theorem 5.1.3.2 that it guarantees that, when deducing a local Σ-equation E t t in the proposed system SDedLoc(E), the interpretations of t and t' will be locally the same in any local Σ-algebra that satisfies the group of fixed equations local E, whenever t and t have meaning in A. This assures to a kind of safety between the local equacional logic and the local algebras

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Associated with an ordered sequence of an even number 2N of positive real numbers is a birth and death process (BDP) on {0, 1, 2,..., N} having these real numbers as its birth and death rates. We generate another birth and death process from this BDP on {0, 1, 2,..., 2N}. This can be further iterated. We illustrate with an example from tan(kz). In BDP, the decay parameter, viz., the largest non-zero eigenvalue is important in the study of convergence to stationarity. In this article, the smallest eigenvalue is found to be useful.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this article we tried to show the paths outlined during the past years by the Research Group on History of Mathematics and/or its relations with Mathematics Education (GPHM) at UNESP in Rio Claro - Brazil, as well as the contributions we believe we have made to Mathematics Education. The group's production has focused on issues that address the history of institutions and characters, linked to the history of disciplines, concepts and learning materials. Also, in broader terms of mathematics education, this article presents results from research that supports the understanding of teachers' conceptions about the use of History of Mathematics in the classroom; material on the history of mathematics accessible to the teacher; the presence of the history of mathematics in textbooks; proposed introductions of real numbers; and the subject of Analysis in teacher education and training.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Matemática Universitária - IGCE