896 resultados para Recurrent associative self-organizing map


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a technique for oriented texture classification which is based on the Hough transform and Kohonen's neural network model. In this technique, oriented texture features are extracted from the Hough space by means of two distinct strategies. While the first operates on a non-uniformly sampled Hough space, the second concentrates on the peaks produced in the Hough space. The described technique gives good results for the classification of oriented textures, a common phenomenon in nature underlying an important class of images. Experimental results are presented to demonstrate the performance of the new technique in comparison, with an implemented technique based on Gabor filters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] Here we present monthly, basin-wide maps of the partial pressure of carbon dioxide (pCO2) for the North Atlantic on a latitude by longitude grid for years 2004 through 2006 inclusive. The maps have been computed using a neural network technique which reconstructs the non-linear relationships between three biogeochemical parameters and marine pCO2. A self organizing map (SOM) neural network has been trained using 389 000 triplets of the SeaWiFSMODIS chlorophyll-a concentration, the NCEP/NCAR reanalysis sea surface temperature, and the FOAM mixed layer depth. The trained SOM was labelled with 137 000 underway pCO2 measurements collected in situ during 2004, 2005 and 2006 in the North Atlantic, spanning the range of 208 to 437atm. The root mean square error (RMSE) of the neural network fit to the data is 11.6?atm, which equals to just above 3 per cent of an average pCO2 value in the in situ dataset. The seasonal pCO2 cycle as well as estimates of the interannual variability in the major biogeochemical provinces are presented and discussed. High resolution combined with basin-wide coverage makes the maps a useful tool for several applications such as the monitoring of basin-wide air-sea CO2 fluxes or improvement of seasonal and interannual marine CO2 cycles in future model predictions. The method itself is a valuable alternative to traditional statistical modelling techniques used in geosciences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

* Supported by projects CCG08-UAM TIC-4425-2009 and TEC2007-68065-C03-02

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-organizing maps (SOM) have been recognized as a powerful tool in data exploratoration, especially for the tasks of clustering on high dimensional data. However, clustering on categorical data is still a challenge for SOM. This paper aims to extend standard SOM to handle feature values of categorical type. A batch SOM algorithm (NCSOM) is presented concerning the dissimilarity measure and update method of map evolution for both numeric and categorical features simultaneously.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article introduces a new neural network architecture, called ARTMAP, that autonomously learns to classify arbitrarily many, arbitrarily ordered vectors into recognition categories based on predictive success. This supervised learning system is built up from a pair of Adaptive Resonance Theory modules (ARTa and ARTb) that are capable of self-organizing stable recognition categories in response to arbitrary sequences of input patterns. During training trials, the ARTa module receives a stream {a^(p)} of input patterns, and ARTb receives a stream {b^(p)} of input patterns, where b^(p) is the correct prediction given a^(p). These ART modules are linked by an associative learning network and an internal controller that ensures autonomous system operation in real time. During test trials, the remaining patterns a^(p) are presented without b^(p), and their predictions at ARTb are compared with b^(p). Tested on a benchmark machine learning database in both on-line and off-line simulations, the ARTMAP system learns orders of magnitude more quickly, efficiently, and accurately than alternative algorithms, and achieves 100% accuracy after training on less than half the input patterns in the database. It achieves these properties by using an internal controller that conjointly maximizes predictive generalization and minimizes predictive error by linking predictive success to category size on a trial-by-trial basis, using only local operations. This computation increases the vigilance parameter ρa of ARTa by the minimal amount needed to correct a predictive error at ARTb· Parameter ρa calibrates the minimum confidence that ARTa must have in a category, or hypothesis, activated by an input a^(p) in order for ARTa to accept that category, rather than search for a better one through an automatically controlled process of hypothesis testing. Parameter ρa is compared with the degree of match between a^(p) and the top-down learned expectation, or prototype, that is read-out subsequent to activation of an ARTa category. Search occurs if the degree of match is less than ρa. ARTMAP is hereby a type of self-organizing expert system that calibrates the selectivity of its hypotheses based upon predictive success. As a result, rare but important events can be quickly and sharply distinguished even if they are similar to frequent events with different consequences. Between input trials ρa relaxes to a baseline vigilance pa When ρa is large, the system runs in a conservative mode, wherein predictions are made only if the system is confident of the outcome. Very few false-alarm errors then occur at any stage of learning, yet the system reaches asymptote with no loss of speed. Because ARTMAP learning is self stabilizing, it can continue learning one or more databases, without degrading its corpus of memories, until its full memory capacity is utilized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Self-OrganizingMap (SOM) is a neural network model that performs an ordered projection of a high dimensional input space in a low-dimensional topological structure. The process in which such mapping is formed is defined by the SOM algorithm, which is a competitive, unsupervised and nonparametric method, since it does not make any assumption about the input data distribution. The feature maps provided by this algorithm have been successfully applied for vector quantization, clustering and high dimensional data visualization processes. However, the initialization of the network topology and the selection of the SOM training parameters are two difficult tasks caused by the unknown distribution of the input signals. A misconfiguration of these parameters can generate a feature map of low-quality, so it is necessary to have some measure of the degree of adaptation of the SOM network to the input data model. The topologypreservation is the most common concept used to implement this measure. Several qualitative and quantitative methods have been proposed for measuring the degree of SOM topologypreservation, particularly using Kohonen's model. In this work, two methods for measuring the topologypreservation of the Growing Cell Structures (GCSs) model are proposed: the topographic function and the topology preserving map

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently there has been an outburst of interest in extending topographic maps of vectorial data to more general data structures, such as sequences or trees. However, there is no general consensus as to how best to process sequences using topographicmaps, and this topic remains an active focus of neurocomputational research. The representational capabilities and internal representations of the models are not well understood. Here, we rigorously analyze a generalization of the self-organizingmap (SOM) for processing sequential data, recursive SOM (RecSOM) (Voegtlin, 2002), as a nonautonomous dynamical system consisting of a set of fixed input maps. We argue that contractive fixed-input maps are likely to produce Markovian organizations of receptive fields on the RecSOM map. We derive bounds on parameter β (weighting the importance of importing past information when processing sequences) under which contractiveness of the fixed-input maps is guaranteed. Some generalizations of SOM contain a dynamic module responsible for processing temporal contexts as an integral part of the model. We show that Markovian topographic maps of sequential data can be produced using a simple fixed (nonadaptable) dynamic module externally feeding a standard topographic model designed to process static vectorial data of fixed dimensionality (e.g., SOM). However, by allowing trainable feedback connections, one can obtain Markovian maps with superior memory depth and topography preservation. We elaborate on the importance of non-Markovian organizations in topographic maps of sequential data. © 2006 Massachusetts Institute of Technology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development planning process introduced under Law No. 25/2004 is said to be a better approach to increase public participation in decentralised Indonesia. This Law has introduced planning mechanisms, called Musyawarah Perencanaan Pembangunan (musrenbang), to provide a forum for development planning. In spite of the expressed intention of these mechanisms to improve public participation, some empirical observations have cast doubt on the outcomes. As a result, some local governments have tried to provide alternative mechanisms for participatory local development planning processes. Since planning constitutes one of the most effective ways to improve community empowerment, this paper aims to examine the extent to which the alternative local development planning process in Indonesia provides sufficient opportunities to improve the self organising capabilities of communities to sustain development programs to meet local needs. In so doing, this paper explores the key elements and approaches of the concept of community empowerment and shows how they can be incorporated within planning processes. Based on this, it then examines the problems encountered by musrenbang in increasing community empowerment. Having done this, it is argued that to change current unfavourable outcomes, procedural justice and social learning approaches need to be incorporated as pathways to community empowerment. Lastly the capacity of an alternative local planning process, called Sistem Dukungan (SISDUK), introduced in South Sulawesi, offering scope to incorporate procedural justice and social learning is explored as a means to improve the self organizing capabilities of local communities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development planning process under Law No. 25/2004 is said to be a new approach to increase public participation in decentralised Indonesia. This Law has introduced planning mechanisms, called Musyawarah Perencanaan Pembangunan (Musrenbang), to provide a forum for development planning. In spite of the expressed intention of these mechanisms to improve public participation, some empirical observations have cast doubt on the outcomes. As a result, some local governments have tried to provide alternative mechanisms to promote for participation in local development planning. Since planning is often said to be one of the most effective ways to improve community empowerment, it is of particular concern, to examine the extent to which the current local development planning processes in Indonesia provide sufficient opportunities to improve the self organising capabilities of communities to sustain development programs to meet local needs. With this objective in mind, this paper examines problems encountered by the new local planning mechanism (Musrenbang) in increasing local community empowerment particularly regarding their self organising capabilities. The concept of community empowerment as a pathway to social justice is explored to identify its key elements and approaches and to show how they can be incorporated within planning processes. Having discussed this, it is then argued that to change current unfavorable outcomes, procedural justice and social learning approaches need to be adopted as pathways to community empowerment. Lastly it is also suggested that an alternative local planning process, called Sistem Dukungan (SISDUK), introduced in South Suluwezi in collaboration with JAICA in 2006 (?) offers scope to incorporate such procedural justice and social learning approaches to improve the self organizing capabilities of local communities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is devoted to the analysis of career paths and employability. The state-of-the-art on this topic is rather poor in methodologies. Some authors propose distances well adapted to the data, but are limiting their analysis to hierarchical clustering. Other authors apply sophisticated methods, but only after paying the price of transforming the categorical data into continuous, via a factorial analysis. The latter approach has an important drawback since it makes a linear assumption on the data. We propose a new methodology, inspired from biology and adapted to career paths, combining optimal matching and self-organizing maps. A complete study on real-life data will illustrate our proposal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synthetic routes leading to 12 L-phenylalanine based mono- and bipolar derivatives (1-12) and an in-depth study of their structure-property relationship with respect to gelation have been presented. These include monopolar systems such as N-[(benzyloxy)carbonyl]-L-phenylalanine-N-alkylamides and the corresponding bipolar derivatives with flexible and rigid spacers such as with 1,12-diaminododecane and 4,4'-diaminodiphenylmethane, respectively. The two ends of the latter have been functionalized with N-[(benzyloxy)carbonyl]-L-phenylalanine units via amide connection. Another bipolar molecule was synthesized in which the middle portion of the hydrocarbon segment contained polymerizable diacetylene unit. To ascertain the role of the presence of urethane linkages in the gelator molecule protected L-phenylalanine derivatives were also synthesized in which the (benzyloxy)carbonyl group has been replaced with (tert-butyloxy)carbonyl, acetyl, and benzoyl groups, respectively. Upon completion of the synthesis and adequate characterization of the newly described molecules, we examined the aggregation and gelation properties of each of them in a number of solvents and their mixtures. Optical microscopy and electron microscopy further characterized the systems that formed gels. Few representative systems, which showed excellent gelation behavior was, further examined by FT-IR, calorimetric, and powder X-ray diffraction studies. To explain the possible reasons for gelation, the results of molecular modeling and energy-minimization studies were also included. Taken together these results demonstrate the importance of the presence of (benzyloxy)carbonyl unit, urethane and secondary amide linkages, chiral purities of the headgroup and the length of the alkyl chain of the hydrophobic segment as critical determinants toward effective gelation.