981 resultados para Recommendation system


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Abstract. We combine Artificial Immune Systems (AIS) technology with Collaborative Filtering (CF) and use it to build a movie recommendation system. We already know that Artificial Immune Systems work well as movie recommenders from previous work by Cayzer and Aickelin ([3], [4], [5]). Here our aim is to investigate the effect of different affinity measure algorithms for the AIS. Two different affinity measures, Kendall's Tau and Weighted Kappa, are used to calculate the correlation coefficients for the movie recommender. We compare the results with those published previously and show that that Weighted Kappa is more suitable than others for movie problems. We also show that AIS are generally robust movie recommenders and that, as long as a suitable affinity measure is chosen, results are good.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Online social networks can be found everywhere from chatting websites like MSN, blogs such as MySpace to social media such as YouTube and second life. Among them, there is one interesting type of online social networks, online dating network that is growing fast. This paper analyzes an online dating network from social network analysis point of view. Observations are made and results are obtained in order to suggest a better recommendation system for people-to-people networks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In three essays we examine user-generated product ratings with aggregation. While recommendation systems have been studied extensively, this simple type of recommendation system has been neglected, despite its prevalence in the field. We develop a novel theoretical model of user-generated ratings. This model improves upon previous work in three ways: it considers rational agents and allows them to abstain from rating when rating is costly; it incorporates rating aggregation (such as averaging ratings); and it considers the effect on rating strategies of multiple simultaneous raters. In the first essay we provide a partial characterization of equilibrium behavior. In the second essay we test this theoretical model in laboratory, and in the third we apply established behavioral models to the data generated in the lab. This study provides clues to the prevalence of extreme-valued ratings in field implementations. We show theoretically that in equilibrium, ratings distributions do not represent the value distributions of sincere ratings. Indeed, we show that if rating strategies follow a set of regularity conditions, then in equilibrium the rate at which players participate is increasing in the extremity of agents' valuations of the product. This theoretical prediction is realized in the lab. We also find that human subjects show a disproportionate predilection for sincere rating, and that when they do send insincere ratings, they are almost always in the direction of exaggeration. Both sincere and exaggerated ratings occur with great frequency despite the fact that such rating strategies are not in subjects' best interest. We therefore apply the behavioral concepts of quantal response equilibrium (QRE) and cursed equilibrium (CE) to the experimental data. Together, these theories explain the data significantly better than does a theory of rational, Bayesian behavior -- accurately predicting key comparative statics. However, the theories fail to predict the high rates of sincerity, and it is clear that a better theory is needed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Blog作为Web2.0的重要应用以其个性化的信息发布平台、多元化的内容载体等特点吸引网络用户。撰写和浏览Blog已经成为网络文化的流行热点,推动了Blog搜索服务的发展。目前的Blog搜索服务大都是基于对查询关键词的匹配来实现的,缺乏自动提取用户兴趣并进行推荐的能力。该文设计和实现了一个面向Blog的兴趣挖掘和推荐系统Blog-digger,该系统采用兴趣挖掘技术,能自动识别用户的兴趣,并主动推荐主题相关的Blog。实验结果证明了该系统的有效性。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recommending users for a new social network user to follow is a topic of interest at present. The existing approaches rely on using various types of information about the new user to determine recommended users who have similar interests to the new user. However, this presents a problem when a new user joins a social network, who is yet to have any interaction on the social network. In this paper we present a particular type of conversational recommendation approach, critiquing-based recommendation, to solve the cold start problem. We present a critiquing-based recommendation system, called CSFinder, to recommend users for a new user to follow. A traditional critiquing-based recommendation system allows a user to critique a feature of a recommended item at a time and gradually leads the user to the target recommendation. However this may require a lengthy recommendation session. CSFinder aims to reduce the session length by taking a case-based reasoning approach. It selects relevant recommendation sessions of past users that match the recommendation session of the current user to shortcut the current recommendation session. It selects relevant recommendation sessions from a case base that contains the successful recommendation sessions of past users. A past recommendation session can be selected if it contains recommended items and critiques that sufficiently overlap with the ones in the current session. Our experimental results show that CSFinder has significantly shorter sessions than the ones of an Incremental Critiquing system, which is a baseline critiquing-based recommendation system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tourist recommendation systems have been growing over the last years, mainly because of the use of mobile devices to get user context. This work discuss some of the most relevant systems on the field and presents PSiS Mobile, which is a mobile recommendation and planning application designed to support a tourist during his vacations. It provides recommendations about points of interest to visit based on tourist preferences and on user and sight context. Also, it suggests a visit planning which can be dynamically adapted based on current user and sight context. This tool works like a journey dairy since it records the tourist moves and tasks to help him remember how the trip was like. To conclude, some field experiences will be presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Search is now going beyond looking for factual information, and people wish to search for the opinions of others to help them in their own decision-making. Sentiment expressions or opinion expressions are used by users to express their opinion and embody important pieces of information, particularly in online commerce. The main problem that the present dissertation addresses is how to model text to find meaningful words that express a sentiment. In this context, I investigate the viability of automatically generating a sentiment lexicon for opinion retrieval and sentiment classification applications. For this research objective we propose to capture sentiment words that are derived from online users’ reviews. In this approach, we tackle a major challenge in sentiment analysis which is the detection of words that express subjective preference and domain-specific sentiment words such as jargon. To this aim we present a fully generative method that automatically learns a domain-specific lexicon and is fully independent of external sources. Sentiment lexicons can be applied in a broad set of applications, however popular recommendation algorithms have somehow been disconnected from sentiment analysis. Therefore, we present a study that explores the viability of applying sentiment analysis techniques to infer ratings in a recommendation algorithm. Furthermore, entities’ reputation is intrinsically associated with sentiment words that have a positive or negative relation with those entities. Hence, is provided a study that observes the viability of using a domain-specific lexicon to compute entities reputation. Finally, a recommendation system algorithm is improved with the use of sentiment-based ratings and entities reputation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les étudiants gradués et les professeurs (les chercheurs, en général), accèdent, passent en revue et utilisent régulièrement un grand nombre d’articles, cependant aucun des outils et solutions existants ne fournit la vaste gamme de fonctionnalités exigées pour gérer correctement ces ressources. En effet, les systèmes de gestion de bibliographie gèrent les références et les citations, mais ne parviennent pas à aider les chercheurs à manipuler et à localiser des ressources. D'autre part, les systèmes de recommandation d’articles de recherche et les moteurs de recherche spécialisés aident les chercheurs à localiser de nouvelles ressources, mais là encore échouent dans l’aide à les gérer. Finalement, les systèmes de gestion de contenu d'entreprise offrent les fonctionnalités de gestion de documents et des connaissances, mais ne sont pas conçus pour les articles de recherche. Dans ce mémoire, nous présentons une nouvelle classe de systèmes de gestion : système de gestion et de recommandation d’articles de recherche. Papyres (Naak, Hage, & Aïmeur, 2008, 2009) est un prototype qui l’illustre. Il combine des fonctionnalités de bibliographie avec des techniques de recommandation d’articles et des outils de gestion de contenu, afin de fournir un ensemble de fonctionnalités pour localiser les articles de recherche, manipuler et maintenir les bibliographies. De plus, il permet de gérer et partager les connaissances relatives à la littérature. La technique de recommandation utilisée dans Papyres est originale. Sa particularité réside dans l'aspect multicritère introduit dans le processus de filtrage collaboratif, permettant ainsi aux chercheurs d'indiquer leur intérêt pour des parties spécifiques des articles. De plus, nous proposons de tester et de comparer plusieurs approches afin de déterminer le voisinage dans le processus de Filtrage Collaboratif Multicritère, de telle sorte à accroître la précision de la recommandation. Enfin, nous ferons un rapport global sur la mise en œuvre et la validation de Papyres.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[ES] La contaminación difusa por nitrato constituye una de las mayores amenazas actuales para la calidad de las aguas subterráneas. De hecho, varias directivas europeas, nacionales y regionales se han legislado con el fin de minimizar el efecto de las prácticas agrarias en la contaminación de los acuíferos por nitratos. El acuífero de La Aldea (Gran Canaria, España) se ha declarado como vulnerable a la contaminación por nitrato según dichas normas. En este estudio se presenta una metodología para desarrollar el acople de un sistema de información geográfica-SIG con el modelo de simulación de nitrato GLEAMS. Esta herramienta permite calcular la cantidad de nitrato lixiviado procedente de los cultivos de tomate bajo invernadero y da la oportunidad de simular otros rangos de fertilización para minimizar el riesgo de contaminación de las aguas subterráneas. Se comprueba que la pérdida de nitrato por lixiviación en la zona a partir de dichos cultivos podía llegar a los 500 kg N/ha, casi un 62% del aportado como fertilizante mineral en un manejo tradicional. Por ello, se aconseja la aplicación de las recomendaciones de abonado incluidas en el código de buenas prácticas agrarias de Canarias o cualquier otro sistema de recomendación de abonado mineral para reducir estas pérdidas, minimizando de esta forma el riesgo de contaminación de las aguas subterráneas. ABSTRACT: Nitrate diffuse pollution is one of the main risks that affect the groundwater quality. Several european directives, national and regional guidelines have been enacted to protect the aquifers against the effect of the agricultural management practices. The “La Aldea” aquifer was declared nitrate vulnerable area following these laws. In this study a methodology was developed to link a Geographical Information System (GIS) with a nitrogen simulation model (GLEAMS) in this area. This tool allows to assess the amount of nitrate leaching that coming from the traditional nitrogen fertilization rates in greenhouses tomato crops, and gives the opportunity to simulate other fertilization rates to reduce the risk of groundwater pollution. The nitrate leaching reached to 500 kg N/ha in several zones of the study area, that represent the 62% of the nitrogen fertiliser apply in a traditional management. It was recommended the application of the Code of Good Management Practices or other recommendation system to decrease the nitrate leaching, in order to reduce the risk of groundwater pollution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This doctoral thesis focuses on the modeling of multimedia systems to create personalized recommendation services based on the analysis of users’ audiovisual consumption. Research is focused on the characterization of both users’ audiovisual consumption and content, specifically images and video. This double characterization converges into a hybrid recommendation algorithm, adapted to different application scenarios covering different specificities and constraints. Hybrid recommendation systems use both content and user information as input data, applying the knowledge from the analysis of these data as the initial step to feed the algorithms in order to generate personalized recommendations. Regarding the user information, this doctoral thesis focuses on the analysis of audiovisual consumption to infer implicitly acquired preferences. The inference process is based on a new probabilistic model proposed in the text. This model takes into account qualitative and quantitative consumption factors on the one hand, and external factors such as zapping factor or company factor on the other. As for content information, this research focuses on the modeling of descriptors and aesthetic characteristics, which influence the user and are thus useful for the recommendation system. Similarly, the automatic extraction of these descriptors from the audiovisual piece without excessive computational cost has been considered a priority, in order to ensure applicability to different real scenarios. Finally, a new content-based recommendation algorithm has been created from the previously acquired information, i.e. user preferences and content descriptors. This algorithm has been hybridized with a collaborative filtering algorithm obtained from the current state of the art, so as to compare the efficiency of this hybrid recommender with the individual techniques of recommendation (different hybridization techniques of the state of the art have been studied for suitability). The content-based recommendation focuses on the influence of the aesthetic characteristics on the users. The heterogeneity of the possible users of these kinds of systems calls for the use of different criteria and attributes to create effective recommendations. Therefore, the proposed algorithm is adaptable to different perceptions producing a dynamic representation of preferences to obtain personalized recommendations for each user of the system. The hypotheses of this doctoral thesis have been validated by conducting a set of tests with real users, or by querying a database containing user preferences - available to the scientific community. This thesis is structured based on the different research and validation methodologies of the techniques involved. In the three central chapters the state of the art is studied and the developed algorithms and models are validated via self-designed tests. It should be noted that some of these tests are incremental and confirm the validation of previously discussed techniques. Resumen Esta tesis doctoral se centra en el modelado de sistemas multimedia para la creación de servicios personalizados de recomendación a partir del análisis de la actividad de consumo audiovisual de los usuarios. La investigación se focaliza en la caracterización tanto del consumo audiovisual del usuario como de la naturaleza de los contenidos, concretamente imágenes y vídeos. Esta doble caracterización de usuarios y contenidos confluye en un algoritmo de recomendación híbrido que se adapta a distintos escenarios de aplicación, cada uno de ellos con distintas peculiaridades y restricciones. Todo sistema de recomendación híbrido toma como datos de partida tanto información del usuario como del contenido, y utiliza este conocimiento como entrada para algoritmos que permiten generar recomendaciones personalizadas. Por la parte de la información del usuario, la tesis se centra en el análisis del consumo audiovisual para inferir preferencias que, por lo tanto, se adquieren de manera implícita. Para ello, se ha propuesto un nuevo modelo probabilístico que tiene en cuenta factores de consumo tanto cuantitativos como cualitativos, así como otros factores de contorno, como el factor de zapping o el factor de compañía, que condicionan la incertidumbre de la inferencia. En cuanto a la información del contenido, la investigación se ha centrado en la definición de descriptores de carácter estético y morfológico que resultan influyentes en el usuario y que, por lo tanto, son útiles para la recomendación. Del mismo modo, se ha considerado una prioridad que estos descriptores se puedan extraer automáticamente de un contenido sin exigir grandes requisitos computacionales y, de tal forma que se garantice la posibilidad de aplicación a escenarios reales de diverso tipo. Por último, explotando la información de preferencias del usuario y de descripción de los contenidos ya obtenida, se ha creado un nuevo algoritmo de recomendación basado en contenido. Este algoritmo se cruza con un algoritmo de filtrado colaborativo de referencia en el estado del arte, de tal manera que se compara la eficiencia de este recomendador híbrido (donde se ha investigado la idoneidad de las diferentes técnicas de hibridación del estado del arte) con cada una de las técnicas individuales de recomendación. El algoritmo de recomendación basado en contenido que se ha creado se centra en las posibilidades de la influencia de factores estéticos en los usuarios, teniendo en cuenta que la heterogeneidad del conjunto de usuarios provoca que los criterios y atributos que condicionan las preferencias de cada individuo sean diferentes. Por lo tanto, el algoritmo se adapta a las diferentes percepciones y articula una metodología dinámica de representación de las preferencias que permite obtener recomendaciones personalizadas, únicas para cada usuario del sistema. Todas las hipótesis de la tesis han sido debidamente validadas mediante la realización de pruebas con usuarios reales o con bases de datos de preferencias de usuarios que están a disposición de la comunidad científica. La diferente metodología de investigación y validación de cada una de las técnicas abordadas condiciona la estructura de la tesis, de tal manera que los tres capítulos centrales se estructuran sobre su propio estudio del estado del arte y los algoritmos y modelos desarrollados se validan mediante pruebas autónomas, sin impedir que, en algún caso, las pruebas sean incrementales y ratifiquen la validación de técnicas expuestas anteriormente.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La Gestión de Recursos Humanos a través de Internet es un problema latente y presente actualmente en cualquier sitio web dedicado a la búsqueda de empleo. Este problema también está presente en AFRICA BUILD Portal. AFRICA BUILD Portal es una emergente red socio-profesional nacida con el ánimo de crear comunidades virtuales que fomenten la educación e investigación en el área de la salud en países africanos. Uno de los métodos para fomentar la educación e investigación es mediante la movilidad de estudiantes e investigadores entre instituciones, apareciendo así, el citado problema de la gestión de recursos humanos. Por tanto, este trabajo se centra en solventar el problema de la gestión de recursos humanos en el entorno específico de AFRICA BUILD Portal. Para solventar este problema, el objetivo es desarrollar un sistema de recomendación que ayude en la gestión de recursos humanos en lo que concierne a la selección de las mejores ofertas y demandas de movilidad. Caracterizando al sistema de recomendación como un sistema semántico el cual ofrecerá las recomendaciones basándose en las reglas y restricciones impuestas por el dominio. La aproximación propuesta se basa en seguir el enfoque de los sistemas de Matchmaking semánticos. Siguiendo este enfoque, por un lado, se ha empleado un razonador de lógica descriptiva que ofrece inferencias útiles en el cálculo de las recomendaciones y por otro lado, herramientas de procesamiento de lenguaje natural para dar soporte al proceso de recomendación. Finalmente para la integración del sistema de recomendación con AFRICA BUILD Portal se han empleado diversas tecnologías web. Los resultados del sistema basados en la comparación de recomendaciones creadas por el sistema y por usuarios reales han mostrado un funcionamiento y rendimiento aceptable. Empleando medidas de evaluación de sistemas de recuperación de información se ha obtenido una precisión media del sistema de un 52%, cifra satisfactoria tratándose de un sistema semántico. Pudiendo concluir que con la solución implementada se ha construido un sistema estable y modular posibilitando: por un lado, una fácil evolución que debería ir encaminada a lograr un rendimiento mayor, incrementando su precisión y por otro lado, dejando abiertas nuevas vías de crecimiento orientadas a la explotación del potencial de AFRICA BUILD Portal mediante la Web 3.0. ---ABSTRACT---The Human Resource Management through Internet is currently a latent problem shown in any employment website. This problem has also appeared in AFRICA BUILD Portal. AFRICA BUILD Portal is an emerging socio-professional network with the objective of creating virtual communities to foster the capacity for health research and education in African countries. One way to foster this capacity of research and education is through the mobility of students and researches between institutions, thus appearing the Human Resource Management problem. Therefore, this dissertation focuses on solving the Human Resource Management problem in the specific environment of AFRICA BUILD Portal. To solve this problem, the objective is to develop a recommender system which assists the management of Human Resources with respect to the selection of the best mobility supplies and demands. The recommender system is a semantic system which will provide the recommendations according to the domain rules and restrictions. The proposed approach is based on semantic matchmaking solutions. So, this approach on the one hand uses a Description Logics reasoning engine which provides useful inferences to the recommendation process and on the other hand uses Natural Language Processing techniques to support the recommendation process. Finally, Web technologies are used in order to integrate the recommendation system into AFRICA BUILD Portal. The results of evaluating the system are based on the comparison between recommendations created by the system and by real users. These results have shown an acceptable behavior and performance. The average precision of the system has been obtained by evaluation measures for information retrieval systems, so the average precision of the system is at 52% which may be considered as a satisfactory result taking into account that the system is a semantic system. To conclude, it could be stated that the implemented system is stable and modular. This fact on the one hand allows an easy evolution that should aim to achieve a higher performance by increasing its average precision and on the other hand keeps open new ways to increase the functionality of the system oriented to exploit the potential of AFRICA BUILD Portal through Web 3.0.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La presente tesis doctoral tiene como objetivo el diseñar un modelo de inferencia visual y sencillo que permita a los usuarios no registrados en un sistema de recomendación inferir por ellos mismos las recomendaciones a partir de sus gustos. Este modelo estará basado en la representación de las relaciones de similaridad entre los ítems. Estas representaciones visuales (que llamaremos mapas gráficos), nos muestran en que lugar se encuentran los ítems más representativos y que ítems son votados de una manera más parecida en función de los votos emitidos por los usuarios del sistema de recomendación. Los mapas gráficos obtenidos, toman la forma de los árboles filogenéticos (que son árboles que muestran las relaciones evolutivas entre varias especies), que muestran la similitud numérica entre cada par de ítems que se consideran similares. Como caso de estudio se muestran en este trabajo los resultados obtenidos utilizando la base de datos de MovieLens 1M, que contiene 3900 películas (ítems). ABSTRACT The present PhD thesis has the objective of designing a visual and simple inference model that allow users, who are not registered in a recommendation system, to infer by themselves the recommendations from their tastes. This model will be based on the representation of relations of similarity between items. These visual representations (called graphical maps) show us where the most representative items are, and items are voted in a similar way based on the votes cast by users of the recommendation system. The obtained graphs maps take form of phylogenetic trees (which are trees that show the evolutionary relationships among various species), that give you an idea about the numeric similarity between each pair of items that are considered similar. As a case study we provide the results obtained using the public database Movielens 1M, which contains 3900 movies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recommender systems are now widely used in e-commerce applications to assist customers to find relevant products from the many that are frequently available. Collaborative filtering (CF) is a key component of many of these systems, in which recommendations are made to users based on the opinions of similar users in a system. This paper presents a model-based approach to CF by using supervised ARTMAP neural networks (NN). This approach deploys formation of reference vectors, which makes a CF recommendation system able to classify user profile patterns into classes of similar profiles. Empirical results reported show that the proposed approach performs better than similar CF systems based on unsupervised ART2 NN or neighbourhood-based algorithm.