924 resultados para Reasonable Lenght of Process


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapid manufacturing is an advanced manufacturing technology based on layer-by-layer manufacturing to produce a part. This paper presents experimental work carried out to investigate the effects of scan speed, layer thickness, and building direction on the following part features: dimensional error, surface roughness, and mechanical properties for DMLS with DS H20 powder and SLM with CL 20 powder (1.4404/AISI 316L). Findings were evaluated using ANOVA analysis. According to the experimental results, build direction has a significant effect on part quality, in terms of dimensional error and surface roughness. For the SLM process, the build direction has no influence on mechanical properties. Results of this research support industry estimating part quality and mechanical properties before the production of parts with additive manufacturing, using iron-based powders

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research was motivated by the need to examine the potential application areas of process intensification technologies in Neste Oil Oyj. According to the company’s interest membrane reactor technology was chosen and applicability of this technology in refining industry was investigated. Moreover, Neste Oil suggested a project which is related to the CO2 capture from FCC unit flue gas stream. The flowrate of the flue gas is 180t/h and consist of approximately 14% by volume CO2. Membrane based absorption process (membrane contactor) was chosen as a potential technique to model CO2 capture from fluid catalytic cracking (FCC) unit effluent. In the design of membrane contactor, a mathematical model was developed to describe CO2 absorption from a gas mixture using monoethanole amine (MEA) aqueous solution. According to the results of literature survey, in the hollow fiber contactor for laminar flow conditions approximately 99 % percent of CO2 can be removed by using a 20 cm in length polyvinylidene fluoride (PDVF) membrane. Furthermore, the design of whole process was performed by using PRO/II simulation software and the CO2 removal efficiency of the whole process obtained as 97 %. The technical and economical comparisons among existing MEA absorption processes were performed to determine the advantages and disadvantages of membrane contactor technology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article I intend to show that certain aspects of A.N. Whitehead's philosophy of organism and especially his epochal theory of time, as mainly exposed in his well-known work Process and Reality, can serve in clarify the underlying assumptions that shape nonstandard mathematical theories as such and also as metatheories of quantum mechanics. Concerning the latter issue, I point to an already significant research on nonstandard versions of quantum mechanics; two of these approaches are chosen to be critically presented in relation to the scope of this work. The main point of the paper is that, insofar as we can refer a nonstandard mathematical entity to a kind of axiomatical formalization essentially 'codifying' an underlying mental process indescribable as such by analytic means, we can possibly apply certain principles of Whitehead's metaphysical scheme focused on the key notion of process which is generally conceived as the becoming of actual entities. This is done in the sense of a unifying approach to provide an interpretation of nonstandard mathematical theories as such and also, in their metatheoretical status, as a formalization of the empirical-experimental context of quantum mechanics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Delays in the justice system have been undermining the functioning and performance of the court system all over the world for decades. Despite the widespread concern about delays, the solutions have not kept up with the growth of the problem. The delay problem existing in the justice courts processes is a good example of the growing need and pressure in professional public organizations to start improving their business process performance.This study analyses the possibilities and challenges of process improvement in professional public organizations. The study is based on experiences gained in two longitudinal action research improvement projects conducted in two separate Finnish law instances; in the Helsinki Court of Appeal and in the Insurance Court. The thesis has two objectives. First objective is to study what kinds of factors in court system operations cause delays and unmanageable backlogs and how to reduce and prevent delays. Based on the lessons learned from the case projects the objective is to give new insights on the critical factors of process improvement conducted in professional public organizations. Four main areas and factors behind the delay problem is identified: 1) goal setting and performance measurement practices, 2) the process control system, 3) production and capacity planning procedures, and 4) process roles and responsibilities. The appropriate improvement solutions include tools to enhance project planning and scheduling and monitoring the agreed time-frames for different phases of the handling process and pending inventory. The study introduces the identified critical factors in different phases of process improvement work carried out in professional public organizations, the ways the critical factors can be incorporated to the different stages of the projects, and discusses the role of external facilitator in assisting process improvement work and in enhancing ownership towards the solutions and improvement. The study highlights the need to concentrate on the critical factors aiming to get the employees to challenge their existing ways of conducting work, analyze their own processes, and create procedures for diffusing the process improvement culture instead of merely concentrating of finding tools, techniques, and solutions appropriate for applications from the manufacturing sector

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concept of Process Management has been used by managers and consultants that search for the improvement of both operational or managerial industrial processes. Its strength is in focusing on the external client and on the optimization of the internal process in order to fulfill their needs. By the time the needs of internal clients are being sought, a set of improvements takes place. The Taguchi method, because of its claim for knowledge share between design engineers and people engaged in the process, is a candidate for process management implementation. The objective of this paper is to propose that kind of application aiming for improvements related with reliability of results revealed by the robust design of Taguchi method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study combines several projects related to the flows in vessels with complex shapes representing different chemical apparata. Three major cases were studied. The first one is a two-phase plate reactor with a complex structure of intersecting micro channels engraved on one plate which is covered by another plain plate. The second case is a tubular microreactor, consisting of two subcases. The first subcase is a multi-channel two-component commercial micromixer (slit interdigital) used to mix two liquid reagents before they enter the reactor. The second subcase is a micro-tube, where the distribution of the heat generated by the reaction was studied. The third case is a conventionally packed column. However, flow, reactions or mass transfer were not modeled. Instead, the research focused on how to describe mathematically the realistic geometry of the column packing, which is rather random and can not be created using conventional computeraided design or engineering (CAD/CAE) methods. Several modeling approaches were used to describe the performance of the processes in the considered vessels. Computational fluid dynamics (CFD) was used to describe the details of the flow in the plate microreactor and micromixer. A space-averaged mass transfer model based on Fick’s law was used to describe the exchange of the species through the gas-liquid interface in the microreactor. This model utilized data, namely the values of the interfacial area, obtained by the corresponding CFD model. A common heat transfer model was used to find the heat distribution in the micro-tube. To generate the column packing, an additional multibody dynamic model was implemented. Auxiliary simulation was carried out to determine the position and orientation of every packing element in the column. This data was then exported into a CAD system to generate desirable geometry, which could further be used for CFD simulations. The results demonstrated that the CFD model of the microreactor could predict the flow pattern well enough and agreed with experiments. The mass transfer model allowed to estimate the mass transfer coefficient. Modeling for the second case showed that the flow in the micromixer and the heat transfer in the tube could be excluded from the larger model which describes the chemical kinetics in the reactor. Results of the third case demonstrated that the auxiliary simulation could successfully generate complex random packing not only for the column but also for other similar cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser additive manufacturing (LAM), known also as 3D printing, has gained a lot of interest in past recent years within various industries, such as medical and aerospace industries. LAM enables fabrication of complex 3D geometries by melting metal powder layer by layer with laser beam. Research in laser additive manufacturing has been focused in development of new materials and new applications in past 10 years. Since this technology is on cutting edge, efficiency of manufacturing process is in center role of research of this industry. Aim of this thesis is to characterize methods for process efficiency improvements in laser additive manufacturing. The aim is also to clarify the effect of process parameters to the stability of the process and in microstructure of manufactured pieces. Experimental tests of this thesis were made with various process parameters and their effect on build pieces has been studied, when additive manufacturing was performed with a modified research machine representing EOSINT M-series and with EOS EOSINT M280. Material used was stainless steel 17-4 PH. Also, some of the methods for process efficiency improvements were tested. Literature review of this thesis presents basics of laser additive manufacturing, methods for improve the process efficiency and laser beam – material- interaction. It was observed that there are only few public studies about process efficiency of laser additive manufacturing of stainless steel. According to literature, it is possible to improve process efficiency with higher power lasers and thicker layer thicknesses. The process efficiency improvement is possible if the effect of process parameter changes in manufactured pieces is known. According to experiments carried out in this thesis, it was concluded that process parameters have major role in single track formation in laser additive manufacturing. Rough estimation equations were created to describe the effect of input parameters to output parameters. The experimental results showed that the WDA (width-depth-area of cross-sections of single track) is correlating exponentially with energy density input. The energy density input is combination of the input parameters of laser power, laser beam spot diameter and scan speed. The use of skin-core technique enables improvement of process efficiency as the core of the part is manufactured with higher laser power and thicker layer thickness and the skin with lower laser power and thinner layer thickness in order to maintain high resolution. In this technique the interface between skin and core must have overlapping in order to achieve full dense parts. It was also noticed in this thesis that keyhole can be formed in LAM process. It was noticed that the threshold intensity value of 106 W/cm2 was exceeded during the tests. This means that in these tests the keyhole formation was possible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the effect of the process variables of the air-drying of Sicilian lemon residues on some technological properties of the fibers produced was studied. The determination and modeling of desorption isotherms were used to establish the equilibrium moisture content at 60, 75, and 90 °C using the static method with 8 saturated salt solutions. The best fit was obtained with BET and GAB models. The drying process was conducted in a vertical tray dryer and delineated according to a central composite experimental design (2²) using the following as factors: air velocity (0.5, 0.75 and 1 m/s) and temperature (60, 75, and 90 °C), and it presented a good fit to the exponential model (R² > 99.9%). The experimental design responses evaluated were the technological properties of the fibers: water-holding, oil-holding, and swelling capacity. Since these properties were present in high levels, the lemon residues could be used to increase content of fibers in foods resulting in the addition of nutritional benefits for the consumers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work reports the use of experimental design for the assessment of the effects of process parameters on the production of fish nuggets in an industrial scale environment. The effect of independent factors on the physicochemical and microbiological parameters was investigated through a full 24 experimental design. The studied factors included the temperature of fish fillet and pulp in the mixer, the temperature of the added fat, the temperature of water and the ratio of protein extraction time to emulsion time. The physicochemical analyses showed that the higher temperature of the pulp and fillet of fish, the lower the protein in the final product. Microbiological analyses revealed that the counting of Staphylococcus coagulase positive, total and thermo-tolerant coliforms were in accordance with the current legislation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to study the effect of blanching and the influence of temperature, solution concentration, and the initial fruit:solution ratio on the osmotic dehydration of star-fruit slices. For blanching, different concentrations of citric and ascorbic acids were studied. The samples immersed in 0.75% citric acid presented little variation in color in relation to the fresh star-fruit. Osmotic dehydration was carried out in an incubator with orbital shaking, controlled temperature, and constant shaking at 120 rpm. The influence of process variables was studied in trials defined by a complete 23 central composite design. In general, water loss and solids gain were positively influenced by temperature and by solution concentration. Nevertheless, lower temperatures reduced water loss throughout the osmotic dehydration process. An increase in the amount of dehydrating solution (initial fruit:solution ratio) slightly influenced the evaluated responses. The process carried out at 50 ºC with a solution concentration of 50% resulted in a product with lower solids gain and greater water loss. Under these conditions, blanching minimized the effect of the osmotic treatment on star-fruit browning, and therefore the blanched fruits showed little variation in color in relation to the fresh fruit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The industrialization of passion fruit in the form of juice produces considerable amounts of residue that could be used as food. The objective of the present study was to determine the effects of the volume of passion fruit juice added to the syrup and the cooking time on the color and texture of passion fruit albedo preserved in syrup. Multi-linear models were well fit to describe the value for a* (for the albedo) the values for b* (for the albedo and syrup), which exhibited high correlation coefficients of 98%, 84%, and 88%, respectively. The volume of passion fruit juice added and the cooking time of the albedos in the syrup, involved in the processing of passion fruit albedo preserves in syrup, significantly affected color analyses. The texture was not affected by the parameters studied. Therefore, the use of larger volumes of passion fruit juice and longer cooking time is recommended for the production of passion fruit albedo preserves in syrup to achieve the characteristic yellow color of the fruit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, Indigenous polymer coated Tin Free Steel cans were analyzed fortheir suitability for thermal processing and storage of fish and fish products following standard methods. The raw materials used for the development of ready to eat thermally processed fish products were found to be of fresh condition. The values for various biochemical and microbiological parameters of the raw materials were well within the limits. Based on the analysis of commercial sterility, instrumental colour, texture, WB-shear force and sensory parameters, squid masala processed to F0 value of 8 min with a total process time of 38.5 min and cook value of 92 min was chosen as the optimum for squid masala in tin free steel cans while shrimp curry processed to F0 7 min with total process time of 44.0 min and cook value of 91.1 min was found to be ideal and was selected for storage study. Squid masala and shrimp curry thermally processed in indigenous polymer coated TFS cans were found to be acceptable even after one year of storage at room temperaturebased on the analysis of various sensory and biochemical parameters. Analysis of the Commission Internationale d’ Eclirage L*, a* and b* color values showed that the duration of exposure to heat treatment influenced the color parameters: the lightness (L*) and yellowness (b*)decreased, and the redness (a*) significantly increased with the increase in processing time or reduction in processing temperature.Instrumental analysis of texture showed that hardness-1 & 2 decreased with reduction in retort temperature while cohesiveness value did not show any appreciable change with decrease in temperature of processing. Other texture profile parameters like gumminess, springiness and chewiness decreased significantly with increase of processing time. W-B shear force values of mackerel meat processed at 130 °C were significantly higher than those processed at 121.1 and 115 °C. HTST processing of mackerel in brine helped in reducing the process time and improving the quality.The study also indicated that indigenous polymer coated TFS cans with easy openends can be a viable alternative to the conventional tin and aluminium cans. The industry can utilize these cans for processing ready to eat fish and shell fish products for both domestic and export markets. This will help in reviving the canning industry in India.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Faculty of Marine Sciences,Cochin University of Science and Technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A chitinolytic fungus, Beau6eria bassiana was isolated from marine sediment and significant process parameters influencing chitinase production in solid state fermentation using wheat bran were optimised. The organism was strongly alkalophilic and produced maximum chitinase at pH 9·20. The NaCl and colloidal chitin requirements varied with the type of moistening medium used. Vegetative (mycelial) inoculum was more suitable than conidial inoculum for obtaining maximal enzyme yield. The addition of phosphate and yeast extract resulted in enhancement of chitinase yield. After optimisation, the maximum enzyme yield was 246·6 units g 1 initial dry substrate (U gIDS 1). This is the first report of the production of chitinase from a marine fungus.