938 resultados para Real-time Polymerase Chain Reaction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Few reports of the utilization of an accurate, cost-effective means for measuring HPV oncogene transcripts have been published. Several papers have reported the use of relative quantitation or more expensive Taqman methods. Here, we report a method of absolute quantitative real-time PCR utilizing SYBR-green fluorescence for the measurement of HPV E7 expression in cervical cytobrush specimens. RESULTS: The construction of a standard curve based on the serial dilution of an E7-containing plasmid was the key for being able to accurately compare measurements between cervical samples. The assay was highly reproducible with an overall coefficient of variation of 10.4%. CONCLUSION: The use of highly reproducible and accurate SYBR-based real-time polymerase chain reaction (PCR) assays instead of performing Taqman-type assays allows low-cost, high-throughput analysis of viral mRNA expression. The development of such assays will help in refining the current screening programs for HPV-related carcinomas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Bovine paratuberculosis is an incurable chronic granulomatous enteritis caused by Mycobacterium avium subspecies paratuberculosis (MAP). The prevalence of MAP in the Swiss cattle population is hard to estimate, since only a few cases of clinical paratuberculosis are reported to the Swiss Federal Food Safety and Veterinary Office each year.Fecal samples from 1,339 cattle (855 animals from 12 dairy herds, 484 animals from 11 suckling cow herds, all herds with a history of sporadic paratuberculosis) were investigated by culture and real-time polymerase chain reaction (PCR) for shedding of MAP. RESULTS: By culture, MAP was detected in 62 of 445 fecal pools (13.9%), whereas PCR detected MAP in 9 of 445 pools (2.0%). All 186 samples of the 62 culture-positive pools were reanalyzed individually. By culture, MAP was grown from 59 individual samples (31.7%), whereas PCR detected MAP in 12 individual samples (6.5%), all of which came from animals showing symptoms of paratuberculosis during the study. Overall, MAP was detected in 10 out of 12 dairy herds (83.3%) and in 8 out of 11 suckling cow herds (72.7%). CONCLUSIONS: There is a serious clinically inapparent MAP reservoir in the Swiss cattle population. PCR cannot replace culture to identify individual MAP shedders but is suitable to identify MAP-infected herds, given that the amount of MAP shed in feces is increasing in diseased animals or in animals in the phase of transition to clinical disease

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Between 2008 and 2012, commercial Swiss layer and layer breeder flocks experiencing problems in laying performance were sampled and tested for infection with Duck adenovirus A (DAdV-A; previously known as Egg drop syndrome 1976 virus). Organ samples from birds sent for necropsy as well as blood samples from living animals originating from the same flocks were analyzed. To detect virus-specific DNA, a newly developed quantitative real-time polymerase chain reaction method was applied, and the presence of antibodies against DAdV-A was tested using a commercially available enzyme-linked immunosorbent assay. In 5 out of 7 investigated flocks, viral DNA was detected in tissues. In addition, antibodies against DAdV-A were detected in all of the flocks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Can the early identification of the species of staphylococcus responsible for infection by the use of Real Time PCR technology influence the approach to the treatment of these infections? ^ This study was a retrospective cohort study in which two groups of patients were compared. The first group, ‘Physician Aware’ consisted of patients in whom physicians were informed of specific staphylococcal species and antibiotic sensitivity (using RT-PCR) at the time of notification of the gram stain. The second group, ‘Physician Unaware’ consisted of patients in whom treating physicians received the same information 24–72 hours later as a result of blood culture and antibiotic sensitivity determination. ^ The approach to treatment was compared between ‘Physician Aware’ and ‘Physician Unaware’ groups for three different microbiological diagnoses—namely MRSA, MSSA and no-SA (or coagulase negative Staphylococcus). ^ For a diagnosis of MRSA, the mean time interval to the initiation of Vancomycin therapy was 1.08 hours in the ‘Physician Aware’ group as compared to 5.84 hours in the ‘Physician Unaware’ group (p=0.34). ^ For a diagnosis of MSSA, the mean time interval to the initiation of specific anti-MSSA therapy with Nafcillin was 5.18 hours in the ‘Physician Aware’ group as compared to 49.8 hours in the ‘Physician Unaware’ group (p=0.007). Also, for the same diagnosis, the mean duration of empiric therapy in the ‘Physician Aware’ group was 19.68 hours as compared to 80.75 hours in the ‘Physician Unaware’ group (p=0.003) ^ For a diagnosis of no-SA or coagulase negative staphylococcus, the mean duration of empiric therapy was 35.65 hours in the ‘Physician Aware’ group as compared to 44.38 hours in the ‘Physician Unaware’ group (p=0.07). However, when treatment was considered a categorical variable and after exclusion of all cases where anti-MRS therapy was used for unrelated conditions, only 20 of 72 cases in the ‘Physician Aware’ group received treatment as compared to 48 of 106 cases in the ‘Physician Unaware’ group. ^ Conclusions. Earlier diagnosis of MRSA may not alter final treatment outcomes. However, earlier identification may lead to the earlier institution of measures to limit the spread of infection. The early diagnosis of MSSA infection, does lead to treatment with specific antibiotic therapy at an earlier stage of treatment. Also, the duration of empiric therapy is greatly reduced by early diagnosis. The early diagnosis of coagulase negative staphylococcal infection leads to a lower rate of unnecessary treatment for these infections as they are commonly considered contaminants. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantitative real-time polymerase chain reaction (qPCR) is a sensitive gene quantitation method that has been widely used in the biological and biomedical fields. The currently used methods for PCR data analysis, including the threshold cycle (CT) method, linear and non-linear model fitting methods, all require subtracting background fluorescence. However, the removal of background fluorescence is usually inaccurate, and therefore can distort results. Here, we propose a new method, the taking-difference linear regression method, to overcome this limitation. Briefly, for each two consecutive PCR cycles, we subtracted the fluorescence in the former cycle from that in the later cycle, transforming the n cycle raw data into n-1 cycle data. Then linear regression was applied to the natural logarithm of the transformed data. Finally, amplification efficiencies and the initial DNA molecular numbers were calculated for each PCR run. To evaluate this new method, we compared it in terms of accuracy and precision with the original linear regression method with three background corrections, being the mean of cycles 1-3, the mean of cycles 3-7, and the minimum. Three criteria, including threshold identification, max R2, and max slope, were employed to search for target data points. Considering that PCR data are time series data, we also applied linear mixed models. Collectively, when the threshold identification criterion was applied and when the linear mixed model was adopted, the taking-difference linear regression method was superior as it gave an accurate estimation of initial DNA amount and a reasonable estimation of PCR amplification efficiencies. When the criteria of max R2 and max slope were used, the original linear regression method gave an accurate estimation of initial DNA amount. Overall, the taking-difference linear regression method avoids the error in subtracting an unknown background and thus it is theoretically more accurate and reliable. This method is easy to perform and the taking-difference strategy can be extended to all current methods for qPCR data analysis.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We developed a real-time detection (RTD) polymerase chain reaction (PCR) with rapid thermal cycling to detect and quantify Pseudomonas aeruginosa in wound biopsy samples. This method produced a linear quantitative detection range of 7 logs, with a lower detection limit of 103 colony-forming units (CFU)/g tissue or a few copies per reaction. The time from sample collection to result was less than 1h. RTD-PCR has potential for rapid quantitative detection of pathogens in critical care patients, enabling early and individualized treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to standardise an in-house real-time polymerase chain reaction (rtPCR) to allow quantification of hepatitis B virus (HBV) DNA in serum or plasma samples, and to compare this method with two commercial assays, the Cobas Amplicor HBV monitor and the Cobas AmpliPrep/Cobas TaqMan HBV test. Samples from 397 patients from the state of São Paulo were analysed by all three methods. Fifty-two samples were from patients who were human immunodeficiency virus and hepatitis C virus positive, but HBV negative. Genotypes were characterised, and the viral load was measure in each sample. The in-house rtPCR showed an excellent success rate compared with commercial tests; inter-assay and intra-assay coefficients correlated with commercial tests (r = 0.96 and r = 0.913, p < 0.001) and the in-house test showed no genotype-dependent differences in detection and quantification rates. The in-house assay tested in this study could be used for screening and quantifying HBV DNA in order to monitor patients during therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mycoplasma pneumoniae (M. pneumoniae) is a common pathogen in cases of atypical pneumonia. Most individuals with Mycoplasma pneumonia run a benign course, with non-specific symptoms of malaise, fever and non-productive cough that usually resolve with no long-term sequelae. Acute lung injury is not commonly seen in Mycoplasma pneumonia. We report a case of acute respiratory distress syndrome cause by M. pneumoniae diagnosed by quantitative real-time polymerase chain reaction (RT-PCR).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Old World screwworm fly (OWS), Chrysomya bezziana Villeneuve (Diptera: Calliphoridae), is a myiasis-causing blowfly of major concern for both animals and humans. Surveillance traps are used in several countries for early detection of incursions and to monitor control strategies. Examination of surveillance trap catches is time-consuming and is complicated by the presence of morphologically similar flies that are difficult to differentiate from Ch. bezziana, especially when the condition of specimens is poor. A molecular-based method to confirm or refute the presence of Ch. bezziana in trap catches would greatly simplify monitoring programmes. A species-specific real-time polymerase chain reaction (PCR) assay was designed to target the ribosomal DNA internal transcribed spacer 1 (rDNA ITS1) of Ch. bezziana. The assay uses both species-specific primers and an OWS-specific Taqman MGB probe. Specificity was confirmed against morphologically similar and related Chrysomya and Cochliomyia species. An optimal extraction protocol was developed to process trap catches of up to 1000 flies and the assay is sensitive enough to detect one Ch. bezziana in a sample of 1000 non-target species. Blind testing of 29 trap catches from Australia and Malaysia detected Ch. bezziana with 100% accuracy. The probability of detecting OWS in a trap catch of 50 000 flies when the OWS population prevalence is low (one in 1000 flies) is 63.6% for one extraction. For three extractions (3000 flies), the probability of detection increases to 95.5%. The real-time PCR assay, used in conjunction with morphology, will greatly increase screening capabilities in surveillance areas where OWS prevalence is low.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Real-time polymerase chain reaction (PCR) has recently been described as a new tool to measure and accurately quantify mRNA levels. In this study, we have applied this technique to evaluate cytokine mRNA synthesis induced by antigenic stimulation with purified protein derivative (PPD) or heparin-binding haemagglutinin (HBHA) in human peripheral blood mononuclear cells (PBMC) from Mycobacterium tuberculosis-infected individuals. Whereas PPD and HBHA optimally induced IL-2 mRNA after respectively 8 and 16 to 24 h of in vitro stimulation, longer in vitro stimulation times were necessary for optimal induction of interferon-gamma (IFN-gamma) mRNA, respectively 16 to 24 h for PPD and 24 to 96 h for HBHA. IL-13 mRNA was optimally induced by in vitro stimulation after 16-48 h for PPD and after 48 to 96 h for HBHA. Comparison of antigen-induced Th1 and Th2 cytokines appears, therefore, valuable only if both cytokine types are analysed at their optimal time point of production, which, for a given cytokine, may differ for each antigen tested. Results obtained by real-time PCR for IFN-gamma and IL-13 mRNA correlated well with those obtained by measuring the cytokine concentrations in cell culture supernatants, provided they were high enough to be detected. We conclude that real-time PCR can be successfully applied to the quantification of antigen-induced cytokine mRNA and to the evaluation of the Th1/Th2 balance, only if the kinetics of cytokine mRNA appearance are taken into account and evaluated for each cytokine measured and each antigen analysed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pseudomonas aeruginosa genotyping relies mainly upon DNA fingerprinting methods, which can be subjective, expensive and time-consuming. The detection of at least three different clonal P. aeruginosa strains in patients attending two cystic fibrosis (CF) centres in a single Australian city prompted the design of a non-gel-based PCR method to enable clinical microbiology laboratories to readily identify these clonal strains. We designed a detection method utilizing heat-denatured P. aeruginosa isolates and a ten-single-nucleotide polymorphism (SNP) profile. Strain differences were detected by SYBR Green-based real-time PCR and high-resolution melting curve analysis (HRM10SNP assay). Overall, 106 P. aeruginosa sputum isolates collected from 74 patients with CF, as well as five reference strains, were analysed with the HRM10SNP assay, and the results were compared with those obtained by pulsed-field gel electrophoresis (PFGE). The HRM10SNP assay accurately identified all 45 isolates as members of one of the three major clonal strains characterized by PFGE in two Brisbane CF centres (Australian epidemic strain-1, Australian epidemic strain-2 and P42) from 61 other P. aeruginosa strains from Australian CF patients and two representative overseas epidemic strain isolates. The HRM10SNP method is simple, is relatively inexpensive and can be completed in <3 h. In our setting, it could be made easily available for clinical microbiology laboratories to screen for local P. aeruginosa strains and to guide infection control policies. Further studies are needed to determine whether the HRM10SNP assay can also be modified to detect additional clonal strains that are prevalent in other CF centres.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: All members of the ruminal Butyrivibrio group convert linoleic acid (cis-9,cis-12-18 : 2) via conjugated 18 : 2 metabolites (mainly cis-9,trans-11-18 : 2, conjugated linoleic acid) to vaccenic acid (trans-11-18 : 1), but only members of a small branch, which includes Clostridium proteoclasticum, of this heterogeneous group further reduce vaccenic acid to stearic acid (18 : 0, SA). The aims of this study were to develop a real-time polymerase chain reaction (PCR) assay that would detect and quantify these key SA producers and to use this method to detect diet-associated changes in their populations in ruminal digesta of lactating cows. Materials and Results: The use of primers targeting the 16S rRNA gene of Cl. proteoclasticum was not sufficiently specific when only binding dyes were used for detection in real-time PCR. Their sequences were too similar to some nonproducing strains. A molecular beacon probe was designed specifically to detect and quantify the 16S rRNA genes of the Cl. proteoclasticum subgroup. The probe was characterized by its melting curve and validated using five SA-producing and ten nonproducing Butyrivibrio-like strains and 13 other common ruminal bacteria. Analysis of ruminal digesta collected from dairy cows fed different proportions of starch and fibre indicated a Cl. proteoclasticum population of 2-9% of the eubacterial community. The influence of diet on numbers of these bacteria was less than variations between individual cows. Conclusion: A molecular beacon approach in qPCR enables the detection of Cl. proteoclasticum in ruminal digesta. Their numbers are highly variable between individual animals. Signifance and Impact of the Study: SA producers are fundamental to the flow of polyunsaturated fatty acid and vaccenic acid from the rumen. The method described here enabled preliminary information to be obtained about the size of this population. Further application of the method to digesta samples from cows fed diets of more variable composition should enable us to understand how to control these bacteria in order to enhance the nutritional characteristics of ruminant-derived foods, including milk and beef.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leaf blotch, caused by Rhynchosporium secalis, was studied in a range of winter barley cultivars using a combination of traditional plant pathological techniques and newly developed multiplex and real-time polymerase chain reaction (PCR) assays. Using PCR, symptomless leaf blotch colonization was shown to occur throughout the growing season in the resistant winter barley cv. Leonie. The dynamics of colonization throughout the growing season were similar in both Leonie and Vertige, a susceptible cultivar. However, pathogen DNA levels were approximately 10-fold higher in the susceptible cultivar, which expressed symptoms throughout the growing season. Visual assessments and PCR also were used to determine levels of R. secalis colonization and infection in samples from a field experiment used to test a range of winter barley cultivars with different levels of leaf blotch resistance. The correlation between the PCR and visual assessment data was better at higher infection levels (R(2) = 0.81 for leaf samples with >0.3% disease). Although resistance ratings did not correlate well with levels of disease for all cultivars tested, low levels of infection were observed in the cultivar with the highest resistance rating and high levels of infection in the cultivar with the lowest resistance rating.