941 resultados para Real-time Assay
Resumo:
The objective of this study was to optimize an internal control to improve SYBR-Green-based qPCR to amplify/detect the BoHV-5 US9 gene in bovine embryos produced invitro and experimentally exposed to the virus. We designed an SYBR-Green-based binding assay that is quick to perform, reliable, easily optimized and compares well with the published assay. Herein we demonstrated its general applicability to detect BoHV-5 US9 gene in bovine embryos produced invitro experimentally exposed to BoHV-5. In order to validate the assay, three different reference genes were tested; and the histone 2a gene was shown to be the most adequate for normalizing the qPCR reaction, by considering melting and standard curves ( p<0.05). On the other hand, no differences were found in the development of bovine embryos invitro whether they were exposed to BoHV-5 reference and field strains comparing to unexposed embryos. The developed qPCR assay may have important field applications as it provides an accurate BoHV-5 US9 gene detection using a proven reference gene and is considerably less expensive than the TaqMan qPCR currently employed in sanitary programs. © 2013 Elsevier Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fast-track Diagnostics respiratory pathogens (FTDRP) multiplex real-time RT-PCR assay was compared with in-house singleplex real-time RT-PCR assays for detection of 16 common respiratory viruses. The FTDRP assay correctly identified 26 diverse respiratory virus strains, 35 of 41 (85%) external quality assessment samples spiked with cultured virus and 232 of 263 (88%) archived respiratory specimens that tested positive for respiratory viruses by in-house assays. Of 308 prospectively tested respiratory specimens selected from children hospitalized with acute respiratory illness, 270 (87.7%) and 265 (86%) were positive by FTDRP and in-house assays for one or more viruses, respectively, with combined test results showing good concordance (K=0.812, 95% CI = 0.786-0.838). Individual FTDRP assays for adenovirus, respiratory syncytial virus and rhinovirus showed the lowest comparative sensitivities with in-house assays, with most discrepancies occurring with specimens containing low virus loads and failed to detect some rhinovirus strains, even when abundant. The FTDRP enterovirus and human bocavirus assays appeared to be more sensitive than the in-house assays with some specimens. With the exceptions noted above, most FTDRP assays performed comparably with in-house assays for most viruses while offering enhanced throughput and easy integration by laboratories using conventional real-time PCR instrumentation. Published by Elsevier B.V.
Resumo:
Cryptosporidium parvum infection is very important with respect to public health, owing to foodborne and waterborne outbreaks and gastrointestinal illness in immunocompetent and immunocompromised persons. In cattle, infection with this species manifests either as a subclinical disease or with diarrheal illness, which occurs more often in the presence of other infectious agents than when alone. The aim of this study was to develop a real-time polymerase chain reaction (PCR) assay for the detection of C. parvum in calf fecal samples and to compare the results of this assay with those of the method routinely used for the diagnosis of Cryptosporidium spp., nested PCR targeting the 18S rRNA gene. Two hundred and nine fecal samples from calves ranging in age from 1 day to 6 months were examined using real-time PCR specific for the actin gene of C. parvum and by a nested PCR targeting the 18S rRNA gene of Cryptosporidium spp. Using real-time PCR detection, 73.2% (153 out of 209) of the samples were positive for C. parvum, while 56.5% (118 out of 209) of the samples were positive for Cryptosporidium spp. when the nested PCR amplification method was used for the detection. The analytical sensitivity of the real-time PCR was approximately one C. parvum oocyst. There was no significant nonspecific DNA amplification of any of the following species and genotype: Cryptosporidium andersoni, Cryptosporidium baileyi, Cryptosporidium bovis, Cryptosporidium canis, Cryptosporidium galli, Cryptosporidium ryanae, Cryptosporidium serpentis, or avian genotype II. Thus, we conclude that real-time PCR targeting the actin gene is a sensitive and specific method for the detection of C. parvum in calf fecal samples.
Resumo:
A real-time polymerase chain reaction (PCR) assay was developed for rapid identification of Bacillus anthracis in environmental samples. These samples often harbor Bacillus cereus bacteria closely related to B. anthracis, which may hinder its specific identification by resulting in false positive signals. The assay consists of two duplex real-time PCR: the first PCR allows amplification of a sequence specific of the B. cereus group (B. anthracis, B. cereus, Bacillus thuringiensis, Bacillus weihenstephanensis, Bacillus pseudomycoides, and Bacillus mycoides) within the phosphoenolpyruvate/sugar phosphotransferase system I gene and a B. anthracis specific single nucleotide polymorphism within the adenylosuccinate synthetase gene. The second real-time PCR assay targets the lethal factor gene from virulence plasmid pXO1 and the capsule synthesis gene from virulence plasmid pXO2. Specificity of the assay is enhanced by the use of minor groove binding probes and/or locked nucleic acids probes. The assay was validated on 304 bacterial strains including 37 B. anthracis, 67 B. cereus group, 54 strains of non-cereus group Bacillus, and 146 Gram-positive and Gram-negative bacteria strains. The assay was performed on various environmental samples spiked with B. anthracis or B. cereus spores. The assay allowed an accurate identification of B. anthracis in environmental samples. This study provides a rapid and reliable method for improving rapid identification of B. anthracis in field operational conditions.
Resumo:
Two alpacas from a herd in southwest Switzerland died for unknown reasons. Necropsy revealed chronic weight loss and pale mucous membranes. Infection with hemotropic mycoplasmas was suspected and subsequently confirmed by molecular methods. In order to investigate the epidemiological situation in this herd, a real-time TaqMan((R)) qPCR assay for the specific detection and quantification of hemoplasma infection in South American camelids was developed. This assay was based on the 16S rRNA gene and amplified 'Candidatus Mycoplasma haemolamae' DNA, but not DNA from other hemoplasmas or non-hemotropic mycoplasma species. The lower detection limit was one copy/PCR, and the amplification efficiency was 97.4%. In 11 out of 24 clinically healthy herd mates of the two infected alpacas, 'Candidatus M. haemolamae' infection was confirmed. No correlation was found between bacterial load and clinical signs or anemia. The assay described herein enables to detect and quantify 'Candidatus M. haemolamae' and may be used in future studies to investigate the prevalence, pathogenesis and treatment follow-up of hemoplasma infections in South American camelids.
Resumo:
Here we determined the analytical sensitivities of broad-range real-time PCR-based assays employing one of three different genomic DNA extraction protocols in combination with one of three different primer pairs targeting the 16S rRNA gene to detect a panel of 22 bacterial species. DNA extraction protocol III, using lysozyme, lysostaphin, and proteinase K, followed by PCR with the primer pair Bak11W/Bak2, giving amplicons of 796 bp in length, showed the best overall sensitivity, detecting DNA of 82% of the strains investigated at concentrations of < or =10(2) CFU in water per reaction. DNA extraction protocols I and II, using less enzyme treatment, combined with other primer pairs giving shorter amplicons of 466 bp and 342 or 346 bp, respectively, were slightly more sensitive for the detection of gram-negative but less sensitive for the detection of gram-positive bacteria. The obstacle of detecting background DNA in blood samples spiked with bacteria was circumvented by introducing a broad-range hybridization probe, and this preserved the minimal detection limits observed in samples devoid of blood. Finally, sequencing of the amplicons generated using the primer pair Bak11W/Bak2 allowed species identification of the detected bacterial DNA. Thus, broad-spectrum PCR targeting the 16S rRNA gene in the quantitative real-time format can achieve an analytical sensitivity of 1 to 10 CFU per reaction in water, avoid detection of background DNA with the introduction of a broad-range probe, and generate amplicons that allow species identification of the detected bacterial DNA by sequencing. These prerequisites are important for its application to blood-containing patient samples.
Resumo:
Early detection of bloodstream infections (BSI) is crucial in the clinical setting. Blood culture remains the gold standard for diagnosing BSI. Molecular diagnostic tools can contribute to a more rapid diagnosis in septic patients. Here, a multiplex real-time PCR-based assay for rapid detection of 25 clinically important pathogens directly from whole blood in <6 h is presented. Minimal analytical sensitivity was determined by hit rate analysis from 20 independent experiments. At a concentration of 3 CFU/ml a hit rate of 50% was obtained for E. aerogenes and 100% for S. marcescens, E. coli, P. mirabilis, P. aeruginosa, and A. fumigatus. The hit rate for C. glabrata was 75% at 30 CFU/ml. Comparing PCR identification results with conventional microbiology for 1,548 clinical isolates yielded an overall specificity of 98.8%. The analytical specificity in 102 healthy blood donors was 100%. Although further evaluation is warranted, our assay holds promise for more rapid pathogen identification in clinical sepsis.
Resumo:
BACKGROUND: Control of brucellosis in livestock, wildlife and humans depends on the reliability of the methods used for detection and identification of bacteria. In the present study, we describe the evaluation of the recently established real-time PCR assay based on the Brucella-specific insertion sequence IS711 with blood samples from 199 wild boars (first group of animals) and tissue samples from 53 wild boars (second group of animals) collected in Switzerland. Results from IS711 real-time PCR were compared to those obtained by bacterial isolation, Rose Bengal Test (RBT), competitive ELISA (c-ELISA) and indirect ELISA (i-ELISA). RESULTS: In the first group of animals, IS711 real-time PCR detected infection in 11.1% (16/144) of wild boars that were serologically negative. Serological tests showed different sensitivities [RBT 15.6%, c-ELISA 7.5% and i-ELISA 5.5%] and only 2% of blood samples were positive with all three tests, which makes interpretation of the serological results very difficult. Regarding the second group of animals, the IS711 real-time PCR detected infection in 26% of animals, while Brucella spp. could be isolated from tissues of only 9.4% of the animals. CONCLUSION: The results presented here indicate that IS711 real-time PCR assay is a specific and sensitive tool for detection of Brucella spp. infections in wild boars. For this reason, we propose the employment of IS711 real-time PCR as a complementary tool in brucellosis screening programs and for confirmation of diagnosis in doubtful cases.
Resumo:
Between 2008 and 2012, commercial Swiss layer and layer breeder flocks experiencing problems in laying performance were sampled and tested for infection with Duck adenovirus A (DAdV-A; previously known as Egg drop syndrome 1976 virus). Organ samples from birds sent for necropsy as well as blood samples from living animals originating from the same flocks were analyzed. To detect virus-specific DNA, a newly developed quantitative real-time polymerase chain reaction method was applied, and the presence of antibodies against DAdV-A was tested using a commercially available enzyme-linked immunosorbent assay. In 5 out of 7 investigated flocks, viral DNA was detected in tissues. In addition, antibodies against DAdV-A were detected in all of the flocks.
Resumo:
The Roche Cobas Amplicor system is widely used for the detection of Neisseria gonorrhoeae but is known to cross react with some commensal Neisseria spp. Therefore, a confirmatory test is required. The most common target for confirmatory tests is the cppB gene of N. gonorrhoeae. However, the cppB gene is also present in other Neisseria spp. and is absent in some N. gonorrhoeae isolates. As a result, laboratories targeting this gene run the risk of obtaining both false-positive and false-negative results. In the study presented here, a newly developed N. gonorrhoeae LightCycler assay (NGpapLC) targeting the N. gonorrhoeae porA pseudogene was tested. The NGpapLC assay was used to test 282 clinical samples, and the results were compared to those obtained using a testing algorithm combining the Cobas Amplicor System (Roche Diagnostics, Sydney, Australia) and an in-house LightCycler assay targeting the cppB gene (cppB-LC). In addition, the specificity of the NGpapLC assay was investigated by testing a broad panel of bacteria including isolates of several Neisseria spp. The NGpapLC assay proved to have comparable clinical sensitivity to the cppB-LC assay. In addition; testing of the bacterial panel showed the NGpapLC assay to be highly specific for N. gonorrhoeae DNA. The results of this study show the NGpapLC assay is a suitable alternative to the cppB-LC assay for confirmation of N. gonorrhoeae-positive results obtained with Cobas Amplicor.
Resumo:
A 5'-nuclease real-time reverse transcriptase-polymerase chain reaction assay was developed for the detection of influenza type A and was validated using a range of influenza A subtypes, including avian strains, and 126 nasopharyngeal aspirate samples. The results show the assay is suitable for screening for influenza A infections, particularly in regions where avian strains may be circulating. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Enterovirus 71 (EV71) is one of the main causative agents of hand, foot and mouth disease (HFMD) in young children. Infections caused by EV71 could lead to many complications, ranging from brainstem encephalitis to pulmonary oedema, resulting in high mortality. Thus, rapid detection of the virus is required to enable measures to be implemented in preventing widespread transmission. Based on primers and probes targeting at the VP1 region, a real-time reverse-transcriptase polymerase chain reaction (RT-PCR) hybridization probe assay was developed for specific detection of EV71 from clinical specimens. Quantitative analysis showed that the assay was able to detect as low as 5 EV71 viral copies and EV71 was detected from 46 of the 55 clinical specimens obtained from pediatric patients suffering from HFMD during the period from 2000 to 2003 in Singapore. This study showed that the single tube real-time RT-PCR assay developed in this study can be applied as a rapid and sensitive method for specific detection of EV71 directly from clinical specimens. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Tropical Australian shark fisheries target two morphologically indistinguishable blacktip sharks, the Australian blacktip (Carcharhinus tilstoni) and the common blacktip (C. limbatus). Their relative contributions to northern and eastern Australian coastal fisheries are unclear because of species identification difficulties. The two species differ in their number of precaudal vertebrae, which is difficult and time consuming to obtain in the field. But, the two species can be distinguished genetically with diagnostic mutations in their mitochondrial DNA ND4 gene. A third closely related sister species, the graceful shark C. amblyrhynchoides, can also be distinguished by species-specific mutations in this gene. DNA sequencing is an effective diagnostic tool, but is relatively expensive and time consuming. In contrast, real-time high-resolution melt (HRM) PCR assays are rapid and relatively inexpensive. These assays amplify regions of DNA with species-specific genetic mutations that result in PCR products with unique melt profiles. A real-time HRM PCR species-diagnostic assay (RT-HRM-PCR) has been developed based on the mtDNA ND4 gene for rapid typing of C. tilstoni, C. limbatus and C. amblyrhynchoides. The assay was developed using ND4 sequences from 66 C. tilstoni, 33. C. limbatus and five C. amblyrhynchoides collected from Indonesia and Australian states and territories; Western Australia, the Northern Territory, Queensland and New South Wales. The assay was shown to be 100% accurate on 160 unknown blacktip shark tissue samples by full mtDNA ND4 sequencing.