944 resultados para Real Root Isolation Methods
Resumo:
The hen’s egg is a source of new life. Therefore, it contains many biologically active compounds. In addition to being a very nutritious food and also commonly used in the food industry due to its many techno-functional properties, the egg can serve as a source of compounds used as nutra-, pharmaand cosmeceuticals. One such interesting compound is ovomucin, an egg white protein responsible for the gel-like properties of thick egg white. Previous studies have indicated that ovomucin and ovomucin-derived peptides have several different bioactive properties. The objectives of the present study were to develop isolation methods for ovomucin, to characterize the structure of ovomucin, to compare various egg fractions as sources of ovomucin, to study the effects of various dissolving methods for ovomucin, and to investigate the bioactive properties of ovomucin and ovomucin-derived peptides. A simple and rapid method for crude ovomucin separation was developed. By using this method crude ovomucin was isolated within hours, compared to the 1-2 days (including a dialysis step) needed when using several other methods. Structural characterization revealed that ovomucin is composed of two subunits, α- and β-ovomucin, as egg white protein formerly called α1-ovomucin seemed to be ovostatin. However, it might be possible that ovostatin is associated within β- and α-ovomucin. This interaction could even have some effect on the physical nature of various egg white layers. Although filtration by-product fraction was a very prominent source of both crude and β-ovomucin, process development has reduced its amount so significantly that it has no practical meaning anymore. Thus, the commercial liquid egg white is probably the best option, especially if it generally contains amounts of β-ovomucin as high as were found in these studies. Crude ovomucin was dissolved both by using physical and enzymic methods. Although sonication was the most effective physical method for ovomucin solubilisation, colloid milling seemed to be a very promising alternative. A milk-like, smooth and opaque crude ovomucin suspension was attained by using a colloid mill. The dissolved ovomucin fractions were further tested for bioactive properties, and it was found that three dissolving methods tested produced moderate antiviral activity against Newcastle disease virus, namely colloid milling, enzymatic hydrolysis and a combination of sonicaton and enzymatic hydrolysis. Moreover, trypsin-digested crude ovomucin was found to have moderate antiviral activity against avian influenza virus: both subtype H5 and H7.
Resumo:
An extensive study was conducted to determine where in the production chain Rhizoctonia solani became associated with UK module-raised Brassica oleracea plants. In total, 2600 plants from 52 crops were sampled directly from propagators and repeat sampled from the field. Additional soil, compost and water samples were collected from propagation nurseries and screened using conventional agar isolation methods. No isolates of R. solani were recovered from any samples collected from propagation nurseries. Furthermore, nucleic acid preparations from samples of soil and compost from propagation nurseries gave negative results when tested for R. solani using real-time PCR. Conversely, R. solani was recovered from 116 of 1300 stem bases collected from field crops. All the data collected suggested R. solani became associated with B. oleracea in the field rather than during propagation. Parsimony and Bayesian phylogenetic studies of ribosomal DNA suggested the majority of further classified isolates belonged to anastomosis groups 2-1 (48/57) and AG-4HGII (8/57), groups known to be pathogenic on Brassica spp. in other countries. Many R. solani isolates were recovered from symptomless plant material and the possibilities for such an association are discussed.
Resumo:
Background We investigated interacting effects of matric potential and soil strength on root elongation of maize and lupin, and relations between root elongation rates and the length of bare (hairless) root apex. Methods Root elongation rates and the length of bare root apexwere determined formaize and lupin seedlings in sandy loam soil of various matric potentials (−0.01 to −1.6 MPa) and bulk densities (0.9 to 1.5 Mg m−3). Results Root elongation rates slowed with both decreasing matric potential and increasing penetrometer resistance. Root elongation of maize slowed to 10 % of the unimpeded rate when penetrometer resistance increased to 2 MPa, whereas lupin elongated at about 40 % of the unimpeded rate. Maize root elongation rate was more sensitive to changes in matric potential in loosely packed soil (penetrometer resistances <1 MPa) than lupin. Despite these differing responses, root elongation rate of both species was linearly correlated with length of the bare root apex (r2 0.69 to 0.97). Conclusion Maize root elongation was more sensitive to changes in matric potential and mechanical impedance than lupin. Robust linear relationships between elongation rate and length of bare apex suggest good potential for estimating root elongation rates for excavated roots.
Resumo:
Objectives: the aim of this study was to evaluate in vitro, by scanning electron microscopy (SEM), the adhesion of blood components on root surfaces irradiated with Er:YAG (2.94 mu m) and GaAlAs Diode (808 nm) lasers and the effects on the morphology of irradiated root surfaces.Methods: One hundred samples of human teeth were obtained. They were previously planed and scaled with manual instruments and divided into five groups of 20 samples each: G1 (control group) - absence of treatment; G2 - Er:YAG laser (7.6 J/cm(2)); G3 - Er:YAG laser (12.9 J/cm(2)); G4 - Diode laser (90 J/cm(2)) and G5 - Diode laser (108 J/cm(2)). After these treatments, 10 samples of each group received a blood tissue but the remaining 10 did not. After laboratory treatments, the samples were obtained by SEM, the photomicrographs were analysed by the score of adhesion of blood components and the results were statistically analysed (Kruskall-Wallis and Mann-Whitney test).Results: In relation to the adhesion of blood components, the study showed no significant differences between the control group and the groups treated with Er:YAG laser (p = 0.9633 and 0.6229). Diode laser radiation was less effective than control group and Er:YAG laser radiation (p < 0.01).Conclusion: None of the proposed treatments increased the adhesion of blood components in a significant way when compared to the control group. Although the Er:YAG laser did not interfere in the adhesion of blood components, it caused more changes on the root surface, whereas the Diode laser inhibited the adhesion.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives. To evaluate the effects of intracanal medicaments on endotoxins in root canals.Methods. Seventy-five freshly extracted maxillary incisors were used in this study. The crowns of teeth were sectioned near the CEJ in order to standardize the root length to 14 mm. The root canals were instrumented to an apical size #50 file and irrigated with 1% sodium hypochlorite solution and sterilized with 60 Co gamma irradiation. Standardized suspension containing Escherichia coli endotoxin was inoculated into the 60 root canals. The specimens were randomly assigned to 5 groups (n=15), according to the intracanal medicament used: (G1) calcium hydroxide; (G2) polymyxin B; (0) combination neomycin-potymyxin B-hydrocortisone; (G4) positive control (no intracanal medicament); (G5) negative control (no endotoxin and no intracanal medicament). After 7 days, the detoxification of endotoxin was evaluated by Limulus lysate assay and antibody production in B-tymphocytes culture.Results. Groups 1, 2 and 5 presented the best results by Limulus lysate and were significantly different to groups 3 and 4 (p<0.05). Stimulation of antibodies production in cell culture by groups 1 and 6 was smaller and statistically different than groups 2, 3, 4 and 5 (p<0.05). Groups 2 and 5 induced a small increase in the antibodies production in relation to the groups 1 and 6. Groups 3 and 4 induced a significant increase of antibodies production (p<0.05).Conclusions. The calcium hydroxide and polymyxin B intracanal medicaments detoxified endotoxin in root canals and altered the properties of LPS to stimulate the antibody production by B-Lymphocytes. The combination neomycin-polymyxin B-hydrocortisone did not detoxified endotoxin. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The correct distinguishment of microorganisms involved in the periodontal disease pathogen, it is important in the understanding of its progression and adequate treatment planning. Considering this fact, some molecular methods of identification and quantification were developed and are extremely sensitive and precise in the characterization of different bacteria species. The present study aimed to realize a literature review, including studies that realized a comparative analysis between bacterial culture and real time PCR methods in the identification of pathogens. The bacterial culture method can possibly identify new microorganisms and realize antibiotics sensitivity tests. The real time PCR is a microbiologic test that identifies and quantifies bacterial species, through gene amplification of predetermined DNA fragments, with high sensitivity and specificity, and need a shorter operation time of the operator when compared to the bacterial culture method. In this way, to determine a specific diagnostic test, should be considered not only its precision in the identification of microorganisms, but the cost-benefit relationship as well.
Resumo:
Introduction: The purpose of this study was to analyze the influence of ultrasonic activation of calcium hydroxide (CH) pastes on pH and calcium release in simulated external root resorptions. Methods: Forty-six bovine incisors had their canals cleaned and instrumented, and defects were created in the external middle third of the roots, which were then used for the study. The teeth were externally made impermeable, except for the defected area, and divided into the following 4 groups containing 10 samples each according to the CH paste and the use or not of the ultrasonic activation: group 1: propylene glycol without ultrasonic activation, group 2: distilled water without ultrasonic activation, group 3: propylene glycol with ultrasonic activation, and group 4: distilled water with ultrasonic activation. After filling the canals with the paste, the teeth were restored and individually immersed into flasks with ultrapure water. The samples were placed into other flasks after 7, 15, and 30 days so that the water pH level could be measured by means of a pH meter. Calcium release was measured by means of an atomic absorption spectrophotometer. Six teeth were used as controls. The results were statistically compared using the Kruskal-Wallis and Mann-Whitney U tests (P < .05). Results: For all periods analyzed, the pH level was found to be higher when the CH paste was activated with ultrasound. Calcium release was significantly greater (P < .05) using ultrasonic activation after 7 and 30 days. Conclusions: The ultrasonic activation of CH pastes favored a higher pH level and calcium release in simulated external root resorptions. (J Endod 2012;38:834-837)
Resumo:
Introduction The aim of this study was to clinically assess the capacity of a novel bovine pericardium based, non-cross linked collagen matrix in root coverage. Methods 62 gingival recessions of Miller class I or II were treated. The matrix was adapted underneath a coronal repositioned split thickness flap. Clinical values were assessed at baseline and after six months. Results The mean recession in each patient was 2.2 mm at baseline. 6 Months after surgery 86.7% of the exposed root surfaces were covered. On average 0,3 mm of recession remained. The clinical attachment level changed from 3.5 ± 1.3 mm to 1,8 ( ± 0,7) mm during the observational time period. No statistically significant difference was found in the difference of probing depth. An increase in the width of gingiva was significant. With a baseline value of 1.5 ± 0.9 mm an improvement of 2.4 ± 0.8 mm after six month could be observed. 40 out of 62 recessions were considered a thin biotype at baseline. After 6 months all 62 sites were assessed thick. Conclusions The results demonstrate the capacity of the bovine pericardium based non-cross linked collagen matrix for successful root coverage. This material was able to enhance gingival thickness and the width of keratinized gingiva. The percentage of root coverage achieved thereby is comparable to existing techniques. This method might contribute to an increase of patient's comfort and an enhanced aesthetical outcome.
Resumo:
Catering to society's demand for high performance computing, billions of transistors are now integrated on IC chips to deliver unprecedented performances. With increasing transistor density, the power consumption/density is growing exponentially. The increasing power consumption directly translates to the high chip temperature, which not only raises the packaging/cooling costs, but also degrades the performance/reliability and life span of the computing systems. Moreover, high chip temperature also greatly increases the leakage power consumption, which is becoming more and more significant with the continuous scaling of the transistor size. As the semiconductor industry continues to evolve, power and thermal challenges have become the most critical challenges in the design of new generations of computing systems. ^ In this dissertation, we addressed the power/thermal issues from the system-level perspective. Specifically, we sought to employ real-time scheduling methods to optimize the power/thermal efficiency of the real-time computing systems, with leakage/ temperature dependency taken into consideration. In our research, we first explored the fundamental principles on how to employ dynamic voltage scaling (DVS) techniques to reduce the peak operating temperature when running a real-time application on a single core platform. We further proposed a novel real-time scheduling method, “M-Oscillations” to reduce the peak temperature when scheduling a hard real-time periodic task set. We also developed three checking methods to guarantee the feasibility of a periodic real-time schedule under peak temperature constraint. We further extended our research from single core platform to multi-core platform. We investigated the energy estimation problem on the multi-core platforms and developed a light weight and accurate method to calculate the energy consumption for a given voltage schedule on a multi-core platform. Finally, we concluded the dissertation with elaborated discussions of future extensions of our research. ^
Resumo:
Aims To examine objective visual acuity measured with ETDRS, retinal thickness (OCT), patient reported outcome and describe levels of glycated hemoglobin and its association with the effects on visual acuity in patients treated with anti-VEGF for visual impairment due to diabetic macular edema (DME) during 12 months in a real world setting. Methods In this cross-sectional study, 58 patients (29 females and 29 males; mean age, 68 years) with type 1 and type 2 diabetes diagnosed with DME were included. Medical data and two questionnaires were collected; an eye-specific (NEI VFQ-25) and a generic health-related quality of life questionnaire (SF-36) were used. Results The total patient group had significantly improved visual acuity and reduced retinal thickness at 4 months and remains at 12 months follow up. Thirty patients had significantly improved visual acuity, and 27 patients had no improved visual acuity at 12 months. The patients with improved visual acuity had significantly improved scores for NEI VFQ-25 subscales including general health, general vision, near activities, distance activities, and composite score, but no significant changes in scores were found in the group without improvements in visual acuity. Conclusions Our study revealed that anti-VEGF treatment improved visual acuity and central retinal thickness as well as patient-reported outcome in real world 12 months after treatment start.
Resumo:
Biofilms are the primary cause of clinical bacterial infections and are impervious to typical amounts of antibiotics, necessitating very high doses for treatment. Therefore, it is highly desirable to develop new alternate methods of treatment that can complement or replace existing approaches using significantly lower doses of antibiotics. Current standards for studying biofilms are based on end-point studies that are invasive and destroy the biofilm during characterization. This dissertation presents the development of a novel real-time sensing and treatment technology to aid in the non-invasive characterization, monitoring and treatment of bacterial biofilms. The technology is demonstrated through the use of a high-throughput bifurcation based microfluidic reactor that enables simulation of flow conditions similar to indwelling medical devices. The integrated microsystem developed in this work incorporates the advantages of previous in vitro platforms while attempting to overcome some of their limitations. Biofilm formation is extremely sensitive to various growth parameters that cause large variability in biofilms between repeated experiments. In this work we investigate the use of microfluidic bifurcations for the reduction in biofilm growth variance. The microfluidic flow cell designed here spatially sections a single biofilm into multiple channels using microfluidic flow bifurcation. Biofilms grown in the bifurcated device were evaluated and verified for reduced biofilm growth variance using standard techniques like confocal microscopy. This uniformity in biofilm growth allows for reliable comparison and evaluation of new treatments with integrated controls on a single device. Biofilm partitioning was demonstrated using the bifurcation device by exposing three of the four channels to various treatments. We studied a novel bacterial biofilm treatment independent of traditional antibiotics using only small molecule inhibitors of bacterial quorum sensing (analogs) in combination with low electric fields. Studies using the bifurcation-based microfluidic flow cell integrated with real-time transduction methods and macro-scale end-point testing of the combination treatment showed a significant decrease in biomass compared to the untreated controls and well-known treatments such as antibiotics. To understand the possible mechanism of action of electric field-based treatments, fundamental treatment efficacy studies focusing on the effect of the energy of the applied electrical signal were performed. It was shown that the total energy and not the type of the applied electrical signal affects the effectiveness of the treatment. The linear dependence of the treatment efficacy on the applied electrical energy was also demonstrated. The integrated bifurcation-based microfluidic platform is the first microsystem that enables biofilm growth with reduced variance, as well as continuous real-time threshold-activated feedback monitoring and treatment using low electric fields. The sensors detect biofilm growth by monitoring the change in impedance across the interdigitated electrodes. Using the measured impedance change and user inputs provided through a convenient and simple graphical interface, a custom-built MATLAB control module intelligently switches the system into and out of treatment mode. Using this self-governing microsystem, in situ biofilm treatment based on the principles of the bioelectric effect was demonstrated by exposing two of the channels of the integrated bifurcation device to low doses of antibiotics.