908 resultados para Rational objective
Resumo:
Economists rely heavily on self-reported measures to examine the relationship between income and health. We directly compare survey responses of a self-reported measure of health that is commonly used in nationally representative surveys with objective measures of the same health condition. We focus on hypertension. We find no evidence of an income/health greadient using self-reported hypertension but a sizeable gradient when using objectively measured hypertension. We also find that the probability of a false negative reporting is significantly income graded. Our results suggest that using commonly available self-reported chronic health measures might underestimate true income-related inequalities in health.
Resumo:
High-speed videokeratoscopy is an emerging technique that enables study of the corneal surface and tear-film dynamics. Unlike its static predecessor, this new technique results in a very large amount of digital data for which storage needs become significant. We aimed to design a compression technique that would use mathematical functions to parsimoniously fit corneal surface data with a minimum number of coefficients. Since the Zernike polynomial functions that have been traditionally used for modeling corneal surfaces may not necessarily correctly represent given corneal surface data in terms of its optical performance, we introduced the concept of Zernike polynomial-based rational functions. Modeling optimality criteria were employed in terms of both the rms surface error as well as the point spread function cross-correlation. The parameters of approximations were estimated using a nonlinear least-squares procedure based on the Levenberg-Marquardt algorithm. A large number of retrospective videokeratoscopic measurements were used to evaluate the performance of the proposed rational-function-based modeling approach. The results indicate that the rational functions almost always outperform the traditional Zernike polynomial approximations with the same number of coefficients.
Resumo:
Unmanned Aerial Vehicles (UAVs) are emerging as an ideal platform for a wide range of civil applications such as disaster monitoring, atmospheric observation and outback delivery. However, the operation of UAVs is currently restricted to specially segregated regions of airspace outside of the National Airspace System (NAS). Mission Flight Planning (MFP) is an integral part of UAV operation that addresses some of the requirements (such as safety and the rules of the air) of integrating UAVs in the NAS. Automated MFP is a key enabler for a number of UAV operating scenarios as it aids in increasing the level of onboard autonomy. For example, onboard MFP is required to ensure continued conformance with the NAS integration requirements when there is an outage in the communications link. MFP is a motion planning task concerned with finding a path between a designated start waypoint and goal waypoint. This path is described with a sequence of 4 Dimensional (4D) waypoints (three spatial and one time dimension) or equivalently with a sequence of trajectory segments (or tracks). It is necessary to consider the time dimension as the UAV operates in a dynamic environment. Existing methods for generic motion planning, UAV motion planning and general vehicle motion planning cannot adequately address the requirements of MFP. The flight plan needs to optimise for multiple decision objectives including mission safety objectives, the rules of the air and mission efficiency objectives. Online (in-flight) replanning capability is needed as the UAV operates in a large, dynamic and uncertain outdoor environment. This thesis derives a multi-objective 4D search algorithm entitled Multi- Step A* (MSA*) based on the seminal A* search algorithm. MSA* is proven to find the optimal (least cost) path given a variable successor operator (which enables arbitrary track angle and track velocity resolution). Furthermore, it is shown to be of comparable complexity to multi-objective, vector neighbourhood based A* (Vector A*, an extension of A*). A variable successor operator enables the imposition of a multi-resolution lattice structure on the search space (which results in fewer search nodes). Unlike cell decomposition based methods, soundness is guaranteed with multi-resolution MSA*. MSA* is demonstrated through Monte Carlo simulations to be computationally efficient. It is shown that multi-resolution, lattice based MSA* finds paths of equivalent cost (less than 0.5% difference) to Vector A* (the benchmark) in a third of the computation time (on average). This is the first contribution of the research. The second contribution is the discovery of the additive consistency property for planning with multiple decision objectives. Additive consistency ensures that the planner is not biased (which results in a suboptimal path) by ensuring that the cost of traversing a track using one step equals that of traversing the same track using multiple steps. MSA* mitigates uncertainty through online replanning, Multi-Criteria Decision Making (MCDM) and tolerance. Each trajectory segment is modeled with a cell sequence that completely encloses the trajectory segment. The tolerance, measured as the minimum distance between the track and cell boundaries, is the third major contribution. Even though MSA* is demonstrated for UAV MFP, it is extensible to other 4D vehicle motion planning applications. Finally, the research proposes a self-scheduling replanning architecture for MFP. This architecture replicates the decision strategies of human experts to meet the time constraints of online replanning. Based on a feedback loop, the proposed architecture switches between fast, near-optimal planning and optimal planning to minimise the need for hold manoeuvres. The derived MFP framework is original and shown, through extensive verification and validation, to satisfy the requirements of UAV MFP. As MFP is an enabling factor for operation of UAVs in the NAS, the presented work is both original and significant.
Resumo:
This paper presents the application of advanced optimization techniques to unmanned aerial system mission path planning system (MPPS) using multi-objective evolutionary algorithms (MOEAs). Two types of multi-objective optimizers are compared; the MOEA nondominated sorting genetic algorithm II and a hybrid-game strategy are implemented to produce a set of optimal collision-free trajectories in a three-dimensional environment. The resulting trajectories on a three-dimensional terrain are collision-free and are represented by using Bézier spline curves from start position to target and then target to start position or different positions with altitude constraints. The efficiency of the two optimization methods is compared in terms of computational cost and design quality. Numerical results show the benefits of adding a hybrid-game strategy to a MOEA and for a MPPS.
Resumo:
Compared to people with a high socioeconomic status, those with a lower socioeconomic status are more likely to perceive their neighbourhood as unattractive and unsafe, which is associated with their lower levels of physical activity. Agreement between objective and perceived environmental factors is often found to be moderate or low, so it is questionable to what extent ‘creating supportive neighbourhoods’ would change neighbourhood perceptions. This study among residents (N=814) of fourteen neighbourhoods in the city of Eindhoven (the Netherlands), investigated to what extent socioeconomic differences in perceived neighbourhood safety and perceived neighbourhood attractiveness can be explained by five domains of objective neighbourhood features (i.e. design, traffic safety, social safety, aesthetics, and destinations), and to what extent other factors may play a role. Unfavourable neighbourhood perceptions of low socioeconomic groups partly reflected their actual less aesthetic and less safe neighbourhoods, and partly their perceptions of low social neighbourhood cohesion and adverse psychosocial circumstances.
Resumo:
This paper presents the application of advanced optimization techniques to unmanned aerial system mission path planning system (MPPS) using multi-objective evolutionary algorithms (MOEAs). Two types of multi-objective optimizers are compared; the MOEA nondominated sorting genetic algorithm II and a hybrid-game strategy are implemented to produce a set of optimal collision-free trajectories in a three-dimensional environment. The resulting trajectories on a three-dimensional terrain are collision-free and are represented by using Bézier spline curves from start position to target and then target to start position or different positions with altitude constraints. The efficiency of the two optimization methods is compared in terms of computational cost and design quality. Numerical results show the benefits of adding a hybrid-game strategy to a MOEA and for a MPPS.
Resumo:
With rising environmental alarm, the reduction of critical aircraft emissions including carbon dioxides (CO2) and nitrogen oxides (NOx) is one of most important aeronautical problems. There can be many possible attempts to solve such problem by designing new wing/aircraft shape, new efficient engine, etc. The paper rather provides a set of acceptable flight plans as a first step besides replacing current aircrafts. The paper investigates a green aircraft design optimisation in terms of aircraft range, mission fuel weight (CO2) and NOx using advanced Evolutionary Algorithms coupled to flight optimisation system software. Two multi-objective design optimisations are conducted to find the best set of flight plans for current aircrafts considering discretised altitude and Mach numbers without designing aircraft shape and engine types. The objectives of first optimisation are to maximise range of aircraft while minimising NOx with constant mission fuel weight. The second optimisation considers minimisation of mission fuel weight and NOx with fixed aircraft range. Numerical results show that the method is able to capture a set of useful trade-offs that reduce NOx and CO2 (minimum mission fuel weight).
Resumo:
This paper presents Multi-Step A* (MSA*), a search algorithm based on A* for multi-objective 4D vehicle motion planning (three spatial and one time dimension). The research is principally motivated by the need for offline and online motion planning for autonomous Unmanned Aerial Vehicles (UAVs). For UAVs operating in large, dynamic and uncertain 4D environments, the motion plan consists of a sequence of connected linear tracks (or trajectory segments). The track angle and velocity are important parameters that are often restricted by assumptions and grid geometry in conventional motion planners. Many existing planners also fail to incorporate multiple decision criteria and constraints such as wind, fuel, dynamic obstacles and the rules of the air. It is shown that MSA* finds a cost optimal solution using variable length, angle and velocity trajectory segments. These segments are approximated with a grid based cell sequence that provides an inherent tolerance to uncertainty. Computational efficiency is achieved by using variable successor operators to create a multi-resolution, memory efficient lattice sampling structure. Simulation studies on the UAV flight planning problem show that MSA* meets the time constraints of online replanning and finds paths of equivalent cost but in a quarter of the time (on average) of vector neighbourhood based A*.
Resumo:
The ‘anti- of ‘(Anti)Queer’ is a queer anti. In particle physics, a domain of science which was for a long time peddled as ultimately knowable, rational and objective, the postmodern turn has made everything queer (or chaotic, as the scientific version of this turn is perhaps more commonly named). This is a world where not only do two wrongs not make a right, but a negative and positive do not calmly cancel each other out to leave nothing, as mathematics might suggest. When matter meets with anti-matter, the resulting explosion can produce not only energy - heat and light? - but new matter. We live in a world whose very basics are no longer the electron and the positron, but an ever proliferating number of chaotic, unpredictable - queer? - subatomic particles. Some are ‘charmed’, others merely ‘strange’ . Weird science indeed. The ‘Anti-’ of ‘Anti-queer’ does not place itself neatly into binaries. This is not a refutation of all that queer has been or will be. It is explicitly a confrontation, a challenge, an attempt to take seriously not only the claims made for queer but the potent contradictions and silences which stand proudly when any attempt is made to write a history of the term. Specifically, ‘Anti-Queer’ is not Beyond Queer, the title of Bruce Bawer’s 1996 book which calmly and self-confidently explains the failings of queer, extols a return to a liberal political theory of cultural change and places its own marker on queer as a movement whose purpose has been served. We are not Beyond Queer. And if we are Anti-Queer, it is only to challenge those working in the arena to acknowledge and work with some of the facts of the movement’s history whose productivity has been erased with a gesture which has, proved, bizarrely, to be reductive and homogenising.
Resumo:
A number of Game Strategies (GS) have been developed in past decades. They have been used in the fields of economics, engineering, computer science and biology due to their efficiency in solving design optimization problems. In addition, research in multi-objective (MO) and multidisciplinary design optimization (MDO) has focused on developing robust and efficient optimization methods to produce a set of high quality solutions with low computational cost. In this paper, two optimization techniques are considered; the first optimization method uses multi-fidelity hierarchical Pareto optimality. The second optimization method uses the combination of two Game Strategies; Nash-equilibrium and Pareto optimality. The paper shows how Game Strategies can be hybridised and coupled to Multi-Objective Evolutionary Algorithms (MOEA) to accelerate convergence speed and to produce a set of high quality solutions. Numerical results obtained from both optimization methods are compared in terms of computational expense and model quality. The benefits of using Hybrid-Game Strategies are clearly demonstrated
Resumo:
In this paper we investigate the heuristic construction of bijective s-boxes that satisfy a wide range of cryptographic criteria including algebraic complexity, high nonlinearity, low autocorrelation and have none of the known weaknesses including linear structures, fixed points or linear redundancy. We demonstrate that the power mappings can be evolved (by iterated mutation operators alone) to generate bijective s-boxes with the best known tradeoffs among the considered criteria. The s-boxes found are suitable for use directly in modern encryption algorithms.
Resumo:
This paper investigates the field programmable gate array (FPGA) approach for multi-objective and multi-disciplinary design optimisation (MDO) problems. One class of optimisation method that has been well-studied and established for large and complex problems, such as those inherited in MDO, is multi-objective evolutionary algorithms (MOEAs). The MOEA, nondominated sorting genetic algorithm II (NSGA-II), is hardware implemented on an FPGA chip. The NSGA-II on FPGA application to multi-objective test problem suites has verified the designed implementation effectiveness. Results show that NSGA-II on FPGA is three orders of magnitude better than the PC based counterpart.
Resumo:
This paper investigates the High Lift System (HLS) application of complex aerodynamic design problem using Particle Swarm Optimisation (PSO) coupled to Game strategies. Two types of optimization methods are used; the first method is a standard PSO based on Pareto dominance and the second method hybridises PSO with a well-known Nash Game strategies named Hybrid-PSO. These optimization techniques are coupled to a pre/post processor GiD providing unstructured meshes during the optimisation procedure and a transonic analysis software PUMI. The computational efficiency and quality design obtained by PSO and Hybrid-PSO are compared. The numerical results for the multi-objective HLS design optimisation clearly shows the benefits of hybridising a PSO with the Nash game and makes promising the above methodology for solving other more complex multi-physics optimisation problems in Aeronautics.