941 resultados para Rare earth doped


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advent of high optical quality transparent nano—structured glasses, the so-called transparent glass ceramics or vitroceramics disclosed the possibility of producing nano-sized photonic devices based on rare-earth doped up—converters. Transparent glass ceramics have been investigated as hosts for lanthanide ions envisioning the production of materials that are easy to shape and with high performance for photonic applications. Rare earth doped glasses have been extensively studied due to their potential applications in optical devices such as solid state lasers and optical fibers. Various photothermal and optical techniques have been successfully applied for the thermal and optical characterization of these rare earth doped materials. In the present thesis, the effective thermal parameters like thermal diffusivity and thermal effusivity of complex materials for various applications have been investigated using photothermal methods along with their optical characterization utilising the common optical absorption as well as fluorescence spectroscopic techniques. These sensitive optical procedures are also essential for exploiting these materials for further photonic applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study is mainly concéntrated on the visible fluorescence of Ho3+ ,nd 3+ and Er 3+rare earths in alkaline earth fluoride hosts(caF2,srF2,BaF2) using a nitrogen laser excitation. A nitrogen laser was fabricated and its parametric studies were first carried out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure of laser glasses in the system (B(2)O(3))(0.6){(Al(2)O(3))(0.4-x)(Y(2)O(3))(x)} (0.1 <= x <= 0.25) has been investigated by means of (11)B, (27)Al, and (89)Y solid state NMR as well as Y-3d core-level X-ray photoelectron spectroscopy, (11)B magic-angle spinning (MAS) NMR spectra reveal that the majority of the boron atoms are three-coordinated, and a slight increase of four-coordinated boron content with increasing x can be noticed. (27)Al MAS NMR spectra show that the alumina species are present in the coordination states four, five and six. All of them are in intimate contact with both the three- and the four-coordinate boron species and vice versa, as indicated by (11)B/(27)Al rotational echo double resonance (REDOR) data. These results are consistent with the formation of a homogeneous, nonsegregated glass structure. For the first time, (89)Y solid state NMR has been used to probe the local environment of Y(3+) ions in a glass-forming system. The intrinsic sensitivity problem associated with (89)Y NMR has been overcome by combining the benefits of paramagnetic doping with those of signal accumulation via Carr-Purcell spin echo trains. Both the (89)Y chemical shifts and the Y-3d core level binding energies are found to be rather sensitive to the yttrium bonding state and reveal that the bonding properties of the yttrium atoms in these glasses are similar to those found in the model compounds YBO(3) and YAl(3)(BO(3))(4), Based on charge balance considerations as well as (11)B NMR line shape analyses, the dominant borate species are concluded to be meta- and pyroborate anions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new preparation route towards rare-earth (RE) doped polycrystalline lead lanthanum zirconate titanate (PLZT) ceramics (RE = Y(3+), Nd(3+), Yb(3+)), based on the use of doped lanthanum oxide or zirconia, is reported. Structural characterization by X-ray powder diffraction reveals that secondary phase formation can be substantially diminished in comparison to conventional preparation methods. The distribution of the rare-earth dopants was investigated as a function of concentration by static (207)Pb spin echo NMR spectra, using Fourier Transformation of Carr-Purcell-Meiboom-Gill spin echo trains. For the Nd- and Yb-doped materials, the interaction of the (207)Pb nuclei with the unpaired electron spin density results in significant broadening and shifting of the NMR signal, whereas these effects are absent in the diamagnetic Y(3+) doped materials. Based on different concentration dependences of the NMR lineshape parameters, we conclude that the structural role of the Nd(3+) dopants differs significantly from that of Yb(3+). While the Nd(3+) ions appear to be statistically distributed in the PLZT lattice, incorporation of Yb(3+) into PLZT appears to be limited by the appearance of doped cubic zirconia as a secondary phase. (C) 2009 Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To facilitate the design of laser host materials with optimized emission properties, detailed structural information at the atomic level is essential, regarding the local bonding environment of the active ions (distribution over distinct lattice sites) and their extent of local clustering as well as their population distribution over separate micro- or nanophases. The present study explores the potential of solid state NMR spectroscopy to provide such understanding for rare-earth doped lead lanthanum zirconate titanate (PLZT) ceramics. As the NMR signals of the paramagnetic dopant species cannot be observed directly, two complementary approaches are utilized: (1) direct observation of diamagnetic mimics using Sc-45 NMR and (2) study of the paramagnetic interaction of the constituent host lattice nuclei with the rare-earth dopant, using Pb-207 NMR lineshape analysis. Sc-45 MAS NMR spectra of scandium-doped PLZT samples unambiguously reveal scandium to be six-coordinated, suggesting that this rare-earth ion substitutes in the B site. Static Pb-207 spin echo NMR spectra of a series of Tm-doped PLZT samples reveal a clear influence of paramagnetic rare-earth dopant concentration on the NMR lineshape. In the latter case high-fidelity spectra can be obtained by spin echo mapping under systematic incrementation of the excitation frequency, benefiting from the signal-to-noise enhancement afforded by spin echo train Fourier transforms. Consistent with XRD data, the Pb-207 NMR lineshape analysis suggests that statistical incorporation into the PLZT lattice occurs at dopant levels of up to 1 wt.% Tm3+, while at higher levels the solubility limit is reached. (C) 2008 Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents and discusses some of the results of the effects of processing on rare earth-doped nanosize SnO2. Several relevant factors that may influence the characteristics of the final product are studied. The influence of two preparation routes and two heat-treatment conditions on the incorporation of dopants is investigated. The route whereby a soluble salt is used as the dopant source is found to provide the highest degree of dopant incorporation, even under the least favorable heat-treatment conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monodisperse spheres of silica and latex were obtained by a surfactant free styrene polimerization and the Stober method respectively. Controlling settling either by centrifugation or by dip-coating colloidal crystals could be obtained. Silica inverse opals were prepared by using the latex colloidal crystals as templates and TEOS/ethanol solution. Eu3+ containing silica spheres were obtained dispersing silica spheres in Eu(NO3)(3) isopropanol solutions. Emission spectra suggest the formation of an amorphous Eu3+ containing phase well adhered at the spheres surface. The utilization of solutions of trifluoroacetates salts of Pb2+ and Eu3+ was observed to destroy the silica spherical pattern when samples are treated at 1000degreesC. In that case nanocrystals of PbF2 and amorphous silica were obtained after heat treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the successful fabrication of planar waveguides in rare-earth doped fluoroindate glass substrates. A new procedure for waveguide fabrication using a thermally evaporated AgF nonmetallic film was developed. The refractive index changes of more than 0.03, associated to low propagation losses achieved, open new perspectives and show the potentiality of using this glass family toward further developments in fabrication and design of integrated optical devices for optical communication wavelengths.© 1995 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present recent results on frequency upconversion (UPC) obtained in fluoroindate glasses (FIG) doped with Ho3+, Tm3+ and Nd3+ ions and codoped with Pr3+/Nd3+ and Yb3+/Tb3+ ions. The results for the Ho3+-doped samples show strong evidence of energy transfer (ET) between Ho3+ ions resonantly excited at 640 nm. The origin of the blue-green upconverted fluorescence observed was identified and the dynamics of the signals revealed the pathways involved in the UPC process. In the case of Tm3+-doped FIG, the samples were resonantly excited at 650 nm and the main mechanism that contributes for the red-to-blue upconversion is excited-state absorption (ESA). The FIG samples codoped with Pr3+/Nd3+ were excited at 588 nm in resonance with transitions starting from the ground state of the Nd 3+ and the Pr3+ ions. It was observed that the presence of Nd3+ ions enhanced the Pr3+ emission at 480 nm by two orders of magnitude. Multiphonon (MP)-assisted upconversion is also discussed for Nd3+-doped FIG pumped at 866 nm. Emission at 750 nm with a peculiar linear dependence with the laser intensity was observed and explained. A rate-equation model that includes MP absorption via thermally coupled electronic excited states of Nd3+ was developed and describes well the experimental results. The role played by effective phonon modes is clearly demonstrated. MP-assisted UPC process was also studied in Yb3+/ Tb3+-codoped FIG samples excited at 1064 nm, which is off-resonance with electronic transitions starting from the ground state. It was determined that the mechanism leading to Tb3+ emission in the blue is due to ET from a pair of excited Yb3+ ions followed by ESA in the Tb 3+ ions. © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we present results on the preparation of planar waveguides based on HfO2 and HfO2-SiO2. Stable sols containing europium and erbium doped HfO2 nanoparticles have been prepared and characterized. The nanosized sol was either deposited (spin-coating) on quartz substrates or embedded in (3-glycidoxipropil)trimethoxisilane (GPTS) used as a hybrid host for posterior deposition. The refractive index dispersion and luminescence characteristics were determined for the resulting HfO2 films. The optical parameters of the waveguides such as refractive index, thickness and propagation losses were measured for the hybrid composite. The planar waveguides present thickness of a few micra and support well confined propagating modes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we report on visible upconversion emission in Er 3+-, and Ho3+-doped PbGeO3-PbF 2-CdF2-based transparent glass ceramics under 980 nm infrared excitation. In erbium-doped vitroceramic samples, blue(410 ran), green(530, and 550 nm) and red(660 nm) emission signals were generated, which were identified as due to the 2H9/2, 2H 11/2, 4S3/2, and 4F9/2 transitions to the 4I15/2 ground-state, respectively. Intense red(650 nm) upconversion emission corresponding to the 5F5 - 5I8 transition and very small blue(490 nm) and green(540 nm) signals assigned to the 5F 2,3 - 5I8 and 4S2, 5F4 - 5I8 transitions, respectively, were observed in the holmium-doped samples. The 540 nm is the dominant upconversion signal in Ho3+-doped vitroceramics under 850 nm excitation. The dependence of the upconversion processes upon pump power and doping concentration are also investigated, and the main routes for the upconversion excitation processes are also identified. The comparison of the upconversion process in transparent glass ceramics and the precursor glass was also examined and the results revealed that the former present higher upconversion efficiencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multiferroic behavior with ion modification using rare-earth cations on crystal structures, along with the insulating properties of BiFeO3 (BFO) thin films was investigated using piezoresponse force microscopy. Rare-earth-substituted BFO films with chemical compositions of (Bi 1.00-xRExFe1.00O3 (x=0; 0.15), RE=La and Nd were fabricated on Pt (111)/Ti/SiO2/Si substrates using a chemical solution deposition technique. A crystalline phase of tetragonal BFO was obtained by heat treatment in ambient atmosphere at 500 °C for 2 h. Ion modification using La3+ and Nd3+ cations lowered the leakage current density of the BFO films at room temperature from approximately 10-6 down to 10-8 A/cm2. The observed improved magnetism of the Nd3+ substituted BFO thin films can be related to the plate-like morphology in a nanometer scale. We observed that various types of domain behavior such as 71° and 180° domain switching, and pinned domain formation occurred. The maximum magnetoelectric coefficient in the longitudinal direction was close to 12 V/cm Oe. © 2012 Elsevier Ltd and Techna Group S.r.l.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have shown the possibility of operation by the piezooptical response of PbO-GeO2 glasses doped with rare earth ions and silver nanoparticles by illumination of double frequency CO2 nanosecond laser. Substantial influence of thermoannealing on the output photoinduced elastooptical susceptibilities was established. The effect is very sensitive to temperature and to the corresponding tensor components. The effect of thermoannealing leads to enhanced long-range ordering with the occurrence of corresponding trapping levels within the forbidden gaps. The discovered effects may be used for creation of low-temperature IR laser triggers.