899 resultados para Random graph
Resumo:
In this paper, we study a problem of designing a multi-hop wireless network for interconnecting sensors (hereafter called source nodes) to a Base Station (BS), by deploying a minimum number of relay nodes at a subset of given potential locations, while meeting a quality of service (QoS) objective specified as a hop count bound for paths from the sources to the BS. The hop count bound suffices to ensure a certain probability of the data being delivered to the BS within a given maximum delay under a light traffic model. We observe that the problem is NP-Hard. For this problem, we propose a polynomial time approximation algorithm based on iteratively constructing shortest path trees and heuristically pruning away the relay nodes used until the hop count bound is violated. Results show that the algorithm performs efficiently in various randomly generated network scenarios; in over 90% of the tested scenarios, it gave solutions that were either optimal or were worse than optimal by just one relay. We then use random graph techniques to obtain, under a certain stochastic setting, an upper bound on the average case approximation ratio of a class of algorithms (including the proposed algorithm) for this problem as a function of the number of source nodes, and the hop count bound. To the best of our knowledge, the average case analysis is the first of its kind in the relay placement literature. Since the design is based on a light traffic model, we also provide simulation results (using models for the IEEE 802.15.4 physical layer and medium access control) to assess the traffic levels up to which the QoS objectives continue to be met. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
[EN]Based on the theoretical tools of Complex Networks, this work provides a basic descriptive study of a synonyms dictionary, the Spanish Open Thesaurus represented as a graph. We study the main structural measures of the network compared with those of a random graph. Numerical results show that Open-Thesaurus is a graph whose topological properties approximate a scale-free network, but seems not to present the small-world property because of its sparse structure. We also found that the words of highest betweenness centrality are terms that suggest the vocabulary of psychoanalysis: placer (pleasure), ayudante (in the sense of assistant or worker), and regular (to regulate).
Resumo:
ICINCO 2010
Resumo:
A classical question in combinatorics is the following: given a partial Latin square $P$, when can we complete $P$ to a Latin square $L$? In this paper, we investigate the class of textbf{$epsilon$-dense partial Latin squares}: partial Latin squares in which each symbol, row, and column contains no more than $epsilon n$-many nonblank cells. Based on a conjecture of Nash-Williams, Daykin and H"aggkvist conjectured that all $frac{1}{4}$-dense partial Latin squares are completable. In this paper, we will discuss the proof methods and results used in previous attempts to resolve this conjecture, introduce a novel technique derived from a paper by Jacobson and Matthews on generating random Latin squares, and use this novel technique to study $ epsilon$-dense partial Latin squares that contain no more than $delta n^2$ filled cells in total.
In Chapter 2, we construct completions for all $ epsilon$-dense partial Latin squares containing no more than $delta n^2$ filled cells in total, given that $epsilon < frac{1}{12}, delta < frac{ left(1-12epsilonright)^{2}}{10409}$. In particular, we show that all $9.8 cdot 10^{-5}$-dense partial Latin squares are completable. In Chapter 4, we augment these results by roughly a factor of two using some probabilistic techniques. These results improve prior work by Gustavsson, which required $epsilon = delta leq 10^{-7}$, as well as Chetwynd and H"aggkvist, which required $epsilon = delta = 10^{-5}$, $n$ even and greater than $10^7$.
If we omit the probabilistic techniques noted above, we further show that such completions can always be found in polynomial time. This contrasts a result of Colbourn, which states that completing arbitrary partial Latin squares is an NP-complete task. In Chapter 3, we strengthen Colbourn's result to the claim that completing an arbitrary $left(frac{1}{2} + epsilonright)$-dense partial Latin square is NP-complete, for any $epsilon > 0$.
Colbourn's result hinges heavily on a connection between triangulations of tripartite graphs and Latin squares. Motivated by this, we use our results on Latin squares to prove that any tripartite graph $G = (V_1, V_2, V_3)$ such that begin{itemize} item $|V_1| = |V_2| = |V_3| = n$, item For every vertex $v in V_i$, $deg_+(v) = deg_-(v) geq (1- epsilon)n,$ and item $|E(G)| > (1 - delta)cdot 3n^2$ end{itemize} admits a triangulation, if $epsilon < frac{1}{132}$, $delta < frac{(1 -132epsilon)^2 }{83272}$. In particular, this holds when $epsilon = delta=1.197 cdot 10^{-5}$.
This strengthens results of Gustavsson, which requires $epsilon = delta = 10^{-7}$.
In an unrelated vein, Chapter 6 explores the class of textbf{quasirandom graphs}, a notion first introduced by Chung, Graham and Wilson cite{chung1989quasi} in 1989. Roughly speaking, a sequence of graphs is called "quasirandom"' if it has a number of properties possessed by the random graph, all of which turn out to be equivalent. In this chapter, we study possible extensions of these results to random $k$-edge colorings, and create an analogue of Chung, Graham and Wilson's result for such colorings.
Resumo:
It is shown in the paper how robustness can be guaranteed for consensus protocols with heterogeneous dynamics in a scalable and decentralized way i.e. by each agent satisfying a test that does not require knowledge of the entire network. Random graph examples illustrate that the proposed certificates are not conservative for classes of large scale networks, despite the heterogeneity of the dynamics, which is a distinctive feature of this work. The conditions hold for symmetric protocols and more conservative stability conditions are given for general nonsymmetric interconnections. Nonlinear extensions in an IQC framework are finally discussed. Copyright © 2005 IFAC.
Resumo:
In this paper, we construct (d, r) networks from sequences of different irrational numbers. In detail, segment an irrational number sequence of length M into groups of d digits which represent the nodes while two consecutive groups overlap by r digits (r = 0,1,...,d-1), and the undirected edges indicate the adjacency between two consecutive groups. (3, r) and (4, r) networks are respectively constructed from 14 different irrational numbers and their topological properties are examined. By observation, we find that network topologies change with different values of d, r and even sequence length M instead of the types of irrational numbers, although they share some similar features with traditional random graphs. We make a further investigation to explain these interesting phenomena and propose the identical-degree random graph model. The results presented in this paper provide some insight into distributions of irrational number digits that may help better understanding of the nature of irrational numbers.
Resumo:
Considerable attention has been focused on the properties of graphs derived from Internet measurements. Router-level topologies collected via traceroute studies have led some authors to conclude that the router graph of the Internet is a scale-free graph, or more generally a power-law random graph. In such a graph, the degree distribution of nodes follows a distribution with a power-law tail. In this paper we argue that the evidence to date for this conclusion is at best insufficient. We show that graphs appearing to have power-law degree distributions can arise surprisingly easily, when sampling graphs whose true degree distribution is not at all like a power-law. For example, given a classical Erdös-Rényi sparse, random graph, the subgraph formed by a collection of shortest paths from a small set of random sources to a larger set of random destinations can easily appear to show a degree distribution remarkably like a power-law. We explore the reasons for how this effect arises, and show that in such a setting, edges are sampled in a highly biased manner. This insight allows us to distinguish measurements taken from the Erdös-Rényi graphs from those taken from power-law random graphs. When we apply this distinction to a number of well-known datasets, we find that the evidence for sampling bias in these datasets is strong.
Resumo:
In this thesis we study the properties of two large dynamic networks, the competition network of advertisers on the Google and Bing search engines and the dynamic network of friend relationships among avatars in the massively multiplayer online game (MMOG) Planetside 2. We are particularly interested in removal patterns in these networks. Our main finding is that in both of these networks the nodes which are most commonly removed are minor near isolated nodes. We also investigate the process of merging of two large networks using data captured during the merger of servers of Planetside 2. We found that the original network structures do not really merge but rather they get gradually replaced by newcomers not associated with the original structures. In the final part of the thesis we investigate the concept of motifs in the Barabási-Albert random graph. We establish some bounds on the number of motifs in this graph.
Resumo:
El concepto de efectividad en Redes Inter-organizacionales se ha investigado poco a pesar de la gran importancia en el desarrollo y sostenibilidad de la red. Es muy importante entender este concepto ya que cuando hablamos de Red, nos referimos a un grupo de más de tres organizaciones que trabajan juntas para alcanzar un objetivo colectivo que beneficia a cada miembro de la red. Esto nos demuestra la importancia de evaluar y analizar este fenómeno “Red Inter-organizacional” de forma más detallada para poder analizar que estructura, formas de gobierno, relaciones entre los miembros y entre otros factores, influyen en la efectividad y perdurabilidad de la Red Inter-organizacional. Esta investigación se desarrolla con el fin de plantear una aproximación al concepto de medición de la efectividad en Redes Inter-organizacionales. El trabajo se centrara en la recopilación de información y en la investigación documental, la cual se realizará por fases para brindarle al lector una mayor claridad y entendimiento sobre qué es Red, Red Inter-Organizacional, Efectividad. Y para finalizar se estudiara Efectividad en una Red Inter-organizacional.
Resumo:
For many networks in nature, science and technology, it is possible to order the nodes so that most links are short-range, connecting near-neighbours, and relatively few long-range links, or shortcuts, are present. Given a network as a set of observed links (interactions), the task of finding an ordering of the nodes that reveals such a range-dependent structure is closely related to some sparse matrix reordering problems arising in scientific computation. The spectral, or Fiedler vector, approach for sparse matrix reordering has successfully been applied to biological data sets, revealing useful structures and subpatterns. In this work we argue that a periodic analogue of the standard reordering task is also highly relevant. Here, rather than encouraging nonzeros only to lie close to the diagonal of a suitably ordered adjacency matrix, we also allow them to inhabit the off-diagonal corners. Indeed, for the classic small-world model of Watts & Strogatz (1998, Collective dynamics of ‘small-world’ networks. Nature, 393, 440–442) this type of periodic structure is inherent. We therefore devise and test a new spectral algorithm for periodic reordering. By generalizing the range-dependent random graph class of Grindrod (2002, Range-dependent random graphs and their application to modeling large small-world proteome datasets. Phys. Rev. E, 66, 066702-1–066702-7) to the periodic case, we can also construct a computable likelihood ratio that suggests whether a given network is inherently linear or periodic. Tests on synthetic data show that the new algorithm can detect periodic structure, even in the presence of noise. Further experiments on real biological data sets then show that some networks are better regarded as periodic than linear. Hence, we find both qualitative (reordered networks plots) and quantitative (likelihood ratios) evidence of periodicity in biological networks.
Resumo:
In 1983, Chvatal, Trotter and the two senior authors proved that for any Delta there exists a constant B such that, for any n, any 2-colouring of the edges of the complete graph K(N) with N >= Bn vertices yields a monochromatic copy of any graph H that has n vertices and maximum degree Delta. We prove that the complete graph may be replaced by a sparser graph G that has N vertices and O(N(2-1/Delta)log(1/Delta)N) edges, with N = [B`n] for some constant B` that depends only on Delta. Consequently, the so-called size-Ramsey number of any H with n vertices and maximum degree Delta is O(n(2-1/Delta)log(1/Delta)n) Our approach is based on random graphs; in fact, we show that the classical Erdos-Renyi random graph with the numerical parameters above satisfies a stronger partition property with high probability, namely, that any 2-colouring of its edges contains a monochromatic universal graph for the class of graphs on n vertices and maximum degree Delta. The main tool in our proof is the regularity method, adapted to a suitable sparse setting. The novel ingredient developed here is an embedding strategy that allows one to embed bounded degree graphs of linear order in certain pseudorandom graphs. Crucial to our proof is the fact that regularity is typically inherited at a scale that is much finer than the scale at which it is assumed. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
We present both analytical and numerical results on the position of partition function zeros on the complex magnetic field plane of the q=2 state (Ising) and the q=3 state Potts model defined on phi(3) Feynman diagrams (thin random graphs). Our analytic results are based on the ideas of destructive interference of coexisting phases and low temperature expansions. For the case of the Ising model, an argument based on a symmetry of the saddle point equations leads us to a nonperturbative proof that the Yang-Lee zeros are located on the unit circle, although no circle theorem is known in this case of random graphs. For the q=3 state Potts model, our perturbative results indicate that the Yang-Lee zeros lie outside the unit circle. Both analytic results are confirmed by finite lattice numerical calculations.
Discriminating Different Classes of Biological Networks by Analyzing the Graphs Spectra Distribution
Resumo:
The brain's structural and functional systems, protein-protein interaction, and gene networks are examples of biological systems that share some features of complex networks, such as highly connected nodes, modularity, and small-world topology. Recent studies indicate that some pathologies present topological network alterations relative to norms seen in the general population. Therefore, methods to discriminate the processes that generate the different classes of networks (e. g., normal and disease) might be crucial for the diagnosis, prognosis, and treatment of the disease. It is known that several topological properties of a network (graph) can be described by the distribution of the spectrum of its adjacency matrix. Moreover, large networks generated by the same random process have the same spectrum distribution, allowing us to use it as a "fingerprint". Based on this relationship, we introduce and propose the entropy of a graph spectrum to measure the "uncertainty" of a random graph and the Kullback-Leibler and Jensen-Shannon divergences between graph spectra to compare networks. We also introduce general methods for model selection and network model parameter estimation, as well as a statistical procedure to test the nullity of divergence between two classes of complex networks. Finally, we demonstrate the usefulness of the proposed methods by applying them to (1) protein-protein interaction networks of different species and (2) on networks derived from children diagnosed with Attention Deficit Hyperactivity Disorder (ADHD) and typically developing children. We conclude that scale-free networks best describe all the protein-protein interactions. Also, we show that our proposed measures succeeded in the identification of topological changes in the network while other commonly used measures (number of edges, clustering coefficient, average path length) failed.
Resumo:
We study quasi-random properties of k-uniform hypergraphs. Our central notion is uniform edge distribution with respect to large vertex sets. We will find several equivalent characterisations of this property and our work can be viewed as an extension of the well known Chung-Graham-Wilson theorem for quasi-random graphs. Moreover, let K(k) be the complete graph on k vertices and M(k) the line graph of the graph of the k-dimensional hypercube. We will show that the pair of graphs (K(k),M(k)) has the property that if the number of copies of both K(k) and M(k) in another graph G are as expected in the random graph of density d, then G is quasi-random (in the sense of the Chung-Graham-Wilson theorem) with density close to d. (C) 2011 Wiley Periodicals, Inc. Random Struct. Alg., 40, 1-38, 2012